trip distance amazonaws com

Report 13 Downloads 96 Views
17th AIM International Workshop 17th – 18th February, 2012 NIES, Tsukuba, JAPAN

Kyoto University

Setsunan University

Gakuji KURATA, Soichi MORIMOTO, Minna GUO, Yuzuru MATSUOKA Yoko SHIMADA 1

Transportation model

Air Pollution model

We developed a reconciliation tool for domestic and international Transport statistics to estimate the reliable past traffic volume.

We developed human exposure model of PM2.5 both indoor and outdoor for Chinese 31 province.

We broke down domestic passenger and freight transport for each “purpose”, “type of Transportation”, “personal attribute” and “trip distance”.

In the exposure model, we developed roadside model to consider the high concentration from road traffic.

By connecting these two models, detail estimation of co-benefit of LCS countermeasure to the reduction of air pollution impact, especially by transportation related LCS policy. 2

framerowk of traffic demand model 【Passenger】 regional population Domestic

【Freight】 Sociopopulation/ economic population development change model scenario

World CGE Model

Domestic

International trip gene. unit by purpose

Freight generation unit

Modal share

Modal share

(Walk, Bicycle, Car, Bus, Railway, Aviation)

Trip length

Domestic Traffic Demand

International Traffic Demand

Passenger Transport demand

Production/ transport demand by commodity International

(truck, railroad, ship)

Transport distance

Transportation Policy Urban Infrastructure Plan Effect of City-Country Planning

Domestic Freight demand

International Freight demand

Freight Transport demand

3

i: transportation type(domestic or international) pa: personal attribute pt: purpose of trip d: representative distance m: mode PTV: passenger transportation volume[p-km] POP: effective population[person] PTG: trip generation rate[number/person] PTS: modal share[-] DIS: trip distance[km] 4

i: transportation type(domestic or international) com: commodity d: representative distance m: mode FTV: freight transportation volume[ton-km] PI: production and import volume of commodity[US$] FTG: freight transport generation rate[ton/US$] FTS: modal share[-] DIS: freight transport distance[km] 5

【Passenger】

Task

Data

STEP1

Domestic

STEP2-P • Population • Trip generation unit • Trip distance share by type • Trip distance share by Purpose

domestic

Modal split

Domestic

Traffic Demand

Production/ transport demand by commodity

World CGE Model (35 region)

International trip gene. unit by purpose

Reconciliation of traffic data 1971-2005, Possession of vehicle, transport, Total transport, energy consumption using statistical data

Each type of Transport Total Passenger Transport

population/ population change model

regional population

Traffic Statistics Energy Statistics

Each type of transport Total Possession transportation

【Freight】 Socioeconomic development scenario

Freight generation unit

Modal Split

(Walk, Bicycle, Car, Bus, Railway, Aviation)

(truck, railroad, ship)

Trip length

Transport distance

International Traffic Demand

Passenger Transport demand

international

Transportation Policy Urban Infrastructure Plan Effect of City-Country Planning

Domestic Freight demand

International Freight demand

Freight Transport demand

Energy consumption

Each type of Transport Total Freight Transport

STEP2-F

Decomposition of Passenger Transport Estimation of the parameters of passenger transportation at 2005

Decomposition of Freight Transport Estimation of the parameter of Freight transportation at 2005

Trip generation unit modal share trip distance

Freight generation unit modal share transportation distance

• • •

Production + import Freight generation unit Distance share by type

6



A lot of errors and losses are included in Traffic statistics.

Minimizing the errors from reference values, such as possession, total mileage, freight amount, energy consumption and ratios between these values ( mileage, load coefficient, fuel consumption per distance etc)  Reference value is derived from statistics and literatures.  Constrain the trend from large swing to avoid the discontinuous of time series. Numbers of Vehicle Objective Function 

Total transport (km) Total transport (person・km, t・km) Total transport (person) Total transport (t) Energy consumption travel distance (km/year/vehicle) Load coefficient (person/vehicle, t/vehicle)

 ER     wch' ST ', j  CHST j ,t 2  wer' ST ', j   ERST j , h,t 2 t j  h  wch' VK ', j  CHVK j ,t 2  wer' VK ', j   ERVK j , h,t 2 h

 wch' TV ', j  CHTV j ,t 2  wer' TV ', j   ERTV j ,h ,t 2 h

 wch' PS ', j  CHPS j ,t 2  wer' PS ', j   ERPS j , h ,t 2 h

 wch' TN ', j  CHTN j ,t 2  wer' TN ', j   ERTN j , h ,t 2 h

 wch' ENT ', j  CHENT j ,t  wer' ENT ', j   ERENT j , h ,t 2

2

h

 wer' DS ', j   ERDS j , h ,t 2  wer' LF ', j   ERLFj ,h ,t 2 h

h

 wer' FEV ', j   ERFEV j , h ,t 2  wer' FET ', j   ERFET j ,h ,t 2 h

Fuel consumption (ktoe / vehicle, ktoe / km person , ktoe / km t)

Average trip distance(Passenger), Average transport distance(Freight)

h

  wer' ATD ', j   ERATD j , h ,t 2  wer' AFD ', j   ERAFD j , h ,t 2  h h 



min

7

Used International and domestic statics for transportation Statistics Name World Road Statistics 63-89, 1995,2001,2002,2006 World Develoement Indicators 2005 World Develoement Indicators 2007 Statistical Year book 47 EUROSTAT(web) ODYSSEE OECD Environmental Data Compendium 2006/2007 Transport Statistical Trends in Transport 1965-1994 Trends in the Transport Sector 1970-2005 World Bank's Railway Database Energy Balnces of OECD Countries, Energy Balnces of non-OECD Countries Globalstat World Motor Vehicle Statistics International Historical Statistics China Statistical Yearbook Korea Statistical Yearbook TEDDY(TERI Energy Data Directory & Yearbook) Land Transport Statistics Japan Automobile Transportation statistics Japan National Transportation Statistics 2008 World Railways ANNUAL BULLETIN OF TRANSPORT STATISTICS FOR EUROPE AND NORTH AMERICA Handbook of Transport Statistics in the UNECE region 2006 Malaysia Transport Statistics 2006 Statistical Handbook of Vietnam Philippine Yearbook 2006 USSR Facts & Figures Annual Statistical Yearbook Thailand Transport and Communications Yearbook 2003 Transport Statistics Great Britain 2005 China Energy Databook 2004 Statistical Abstract of Transport in Asia and the Pacific 2007 Philippine Statistical Yearbook 1991 North American Transportation Statistics Taiwan Statistical Databook 2007 Statistical Yearbook of Bangladesh 2005

Source IRF, 2003,1995,2001,2002,2006 World Bank, 2005 World Bank, 2007 UN, 2003 European Comission, webからDL(2008/4/11) ADEME, 2002 OECD, 2007 ECMT, 1998 ECMT, 2007 World Bank, 2001 IEA, 2007 enerdata, 2006 Japan Automobile Manufacturers Association, 2004, 2008 Mitchell, 2003 National Bureau of Statistics of China, 1993, 1994, 1995, 2000, 2001, 2006 Korea National Statistical Office, 2002, 2006 TERI, 2002, 2006 MLIT Japan, 2001, 2006 MLIT Japan 1987-2006 Bureau of Transportation Statistics, U.S. Department of Transportaion, 2008 Japan Railway Technical Service, 2005

UN Economic Commission for Europe, 2004, 2005, 2008 UN Economic Commission for Europe, 2006 , 2006 General Statistics Office of Vietnam, 2005, 2006 National Statistics Office, 2006 Academic International Press, 1977,1979,1987,1990,1991,1992 National Statistical Office, 1998,2000,2002,2004 SWEDISH INSTITUTE FOR TRANSPORT AND COMMUNICATIONS ANALYSIS, 2003 DEPARTMENT FOR TRANSPORT, 2005 Lawrence Berkeley National Laboratory, 2004 UN Economic and Social Commission for Asia and the Pacific, 2007 Republic of the Phillippine National Statistical Coordination Board, 1991 North American Transportation Statistics Database, 2007 Council for Economic Planning and Development Exective Yuan, R.O.C., 2007 Bngladesh Bureau of Statistics, 2005

8

Sample image of Result output p-km of passenger car (Australia)

Mil-p-km

Example of the Result

9

9

【Passenger】

Task

Data

STEP1

Domestic

STEP2-P • Population • Trip generation unit • Trip distance share by type • Trip distance share by Purpose

domestic

Modal split

Domestic

Traffic Demand

Production/ transport demand by commodity

World CGE Model (35 region)

International trip gene. unit by purpose

Reconciliation of traffic data 1971-2005, Possession of vehicle, transport, Total transport, energy consumption using statistical data

Each type of Transport Total Passenger Transport

population/ population change model

regional population

Traffic Statistics Energy Statistics

Each type of transport Total Possession transportation

【Freight】 Socioeconomic development scenario

Freight generation unit

Modal Split

(Walk, Bicycle, Car, Bus, Railway, Aviation)

(truck, railroad, ship)

Trip length

Transport distance

International Traffic Demand

Passenger Transport demand

international

Transportation Policy Urban Infrastructure Plan Effect of City-Country Planning

Domestic Freight demand

International Freight demand

Freight Transport demand

Energy consumption

Each type of Transport Total Freight Transport

STEP2-F

Decomposition of Passenger Transport Estimation of the parameters of passenger transportation at 2005

Decomposition of Freight Transport Estimation of the parameter of Freight transportation at 2005

Trip generation unit modal share trip distance

Freight generation unit modal share transportation distance

• • •

Production + import Freight generation unit Distance share by type

10

International Domestic

Domestics transport from STEP1 Demand Population Passenger Transport demand by individual attribute by each type of transport Reference Value(Japan) calibration Program to estimate the parameters of passenger transport

Output

Trip generation unit by individual attribute, purpose of trip

Modal share by type of transpiration, purpose of trip and distance category

Trip generation unit by individual attribute and Purpose of trip Distance share by the type of transportation Distance share by Purpose of trip

Representative Trip distance by each distance category

distance category  Short  Middle  Long

11

International

Domestic

Each country Production + import by each commodity

from STEP1 Freight transportation amount by each type of transportation

Reference Value(Japan) calibration Program to estimate the parameters for Freight transportation

Freight generation unit by each commodity Distance category share by each type of transportation

Output Freight generation unit by commodity

Modal share by type of transportation and distance category

Representative distance for each distance category

distance category  Short  Middle  Long

12

ton-km by commodities

mining product other product forest product machine food product agriculture product ceramic, soil and stone oil and coal product metal product paper and pulp chemical product textile product 300000 waste

ton-km by mode domestic naviation

fishery product 250000

mil-ton-km

total: 5.9×1011ton-km

freight rail truck

200000 150000 100000 50000 0

~300km

100~750km

750km~

13

ton-km by commodities mining product agriculture product ceramic, soil and stone forest product other product

total: 6.8×1011ton-km

oil and coal product food product metal product textile product machine chemical product 300000

ton-km by mode

fishery product

mil-ton-km

250000

200000

domestic naviation 150000

freight rail truck

100000

50000

0 ~300km

100~750km

750km~

14

Transportation model

Air Pollution model

We developed Country level Transportation model to estimate the traffic volume which is consistent with available statistics.

We developed human exposure model of PM2.5 both indoor and outdoor for Chinese 31 province.

We broke down domestic passenger and freight transport for each “purpose”, “transportation facility”, “personal attribute” and “trip distance”.

In the exposure model, roadside model to consider the high concentration from road traffic.

By connecting these two models, detail estimation of co-benefit of LCS countermeasure to reduction of air pollution impact, especially by transportation relate LCS policy.

15

Estimation of Individual Exposure to PM2.5 Time use survey

Staying duration in each micro-environment for each age group

Duration

Emission inventory

Traffic by province

Traffic by each road

WRF / CMAQ

Roadside Model

Background concentration

Concentration from road traffic

Energy / Fuel consumption in Household Information about Housing

Indoor PM Emission

Concentration

Micro-environment individual Exposure Model Exposure to each age group

16

Target Area

Target Year: 2005

27 Provinces and 4 Municipalities

Polutant : PM2.5 17

Micro-environment individual Exposure Model Daily average exposure concentration Classification of individual attribute

E   Cm  T a

a m

m

Concentration in micro-environ.

×

Stay duration

54 age 0-4,5-14, 15-19, .....70-74, 75+ 15group Male / Female Employed / Unemployed

Daily average concentration a exposure の1日平均曝露濃度(μ g/m3) E a : コホート

Cm : 微環境 m の汚染物質濃度(μ Concentration in micro-environment g/m3) a m

T

a

Duration ofa stay in micro-environment m m 滞在時間率(-) : コホート の微環境 Individual attribute group : コホート 18

Considered micro-environment in this model Micro Indoor Place Purpose Emission source Environ.

Duration of stay

A

Indoor

Cooking Hot water

Oven, Cooking Stove

Cooking

B

Indoor

Heating

Heating Stove, Fireplace

Home (except sleeping time) (When average outdoor temperature < 10℃)

C D

Indoor

Lighting

Kerosene lamp

Night time

Indoor



None

Inside Building (Home and Building)

E(H)





Outdoor activity (500 m from road)

Time use survey Adult (age 15 and above): Time use survey (10 provinces) Child:from literatures

19

19

Micro-environment individual Exposure Model Single-Compartment Mass Balance Model under steady-state assumption Cm 

1 v  Fd

Se   F vC   p o  V  

Formulation to calculate concentration. with Indoor emission ME A、B、C

Se 1 Cm  ( Fp vC0  ) V  v  Fd 

Cm

m における大気汚染物質濃度(μ : 微環境 g/m3) (m) (μg/m3) Pollutant concentration at micro environment

Co

3 Pollutant concentration atg/m Outdoor (μg/m3) : 屋外大気汚染物質濃度(μ )

Fp : 浸透率(-) Penetration Factor (-) v : 換気回数(1/hr) Air Exchange Rate (1/hr)

w/o indoor emission ME D Fp v Cm  Co v  Fd

Fd

Deposition rate (1/hr) : 除去率(1/hr)

S

: 一時間当たり燃料消費量(KJ/hr) Energy consumption (KJ/hr)

Outdoor ME E

e

Emission Factor (μg/KJ) : 排出係数(μ g/KJ)

V

3 Volume of Micro : 部屋の体積(m ) Environment(m3)

Cm  Co

20

20

Emission inventory of Air pollutants Used data:  Large Point Source: from International database (Power plant, Iron & steel, Cement, Petrochemical)  GDP, Road length, Rail length:China annual statistics  Population, Population by industry: Histrical Population database fo China(2000) Mothodology:

Based on Yasuhuku(2011) Output species: NOx, SOx, CO, PM2.5, PM10, NMHC Output resolution: 30sec x 30sec ( ≒ 1km)

PM2.5 emission (ton/mesh・year)

21

40° E 50° E 60° E 70° E

90° E

110° E

130° E

150° E

170° E 180°

50° N

WRF

40° N

CMAQ 30° N

20° N

10° N

Target Area Lambert Conformal Center:112°E 21°N Standard latitude :10°, 30°



10° S

WRF

CMAQ

Grid Size

80km

80km

Number of Grids (East-West) Number of Grids (North-South)

120

117

105

102

20° S

Calculation Term 1 Jan 2001

- 31 Dec 2001 22

22



Meso-scale Meteorological Model developed by NCAR and Researchers community.



WRF ARW(Advanced Research WRF) version 3.1.1



Input Data  

Terrain and Landuse data : USGS(U.S. Geological Survey) Initial and Boundary Meteorological Data: JRA-25 (Re-Analysis by JMA)

  



Multi scale Chemical Transport Model developed by US EPA CMAQ version 4.7 Input Data  Emission Mesh Data Chemical Reaction Mechanism  Gas Phase: CB05 (51 chemical Species, 156 Reactions)  Aerosol : AERO5

23

Roadside Model

Road Network Data: OpenStreetMap

• Calculation case and mesh size: ①Whole China Case: 10km ②Beijing Fine Case: 1km • Divided a mesh to 3 classes by the distance from road. C H M

100m

M

L

L

500m

「High」: 500m 24

Definition of the buffer area of Roadside Model

Road : OpenStreetMap

In the case of Beijing 1 km mesh case.

25

25

Indoor Fuel Consumption Considered Fuel: Biomass, Coal, petroleum, kerosene, LPG, natural Gas Energy consumption per capita in Household ・ Household energy consumption both Urban/Rural: 「Labor and population statistics」、「Chinese Energy statistics」

・ Household Biomass consumption in Rural area: 「Chinese Rural energy statistics 」

Fuel Share by Fuel type and purpose [%] Purpose 用途 Cooking 調理・給湯 Heating 都市 暖房 Urban Lighting 照明 Cooking 料理・給湯 Rural Heating 農村 暖房 Lighting 照明

Biomass バイオマス Wood 薪

0 0 0 67 33 0

Agr. Residue 作物残渣

0 0 0 66 34 0

Coal 石炭 46 54 0 68 32 0

Kerosene LPG 灯油 LPG 100 0 0 0 0 100

100 0 0 100 0 0

Natural Gas Heat 天然ガス 熱 100 0 0 100 0 0

0 100 0 0 0 0

26

27

27

Population Density

Individual Exposure Concentration

from LandScan2008

Outdoor Concentration

This result is still preliminary. Absolute value of concentration is not yet validated.

+ Contribution from Indoor emission

category (Person) Population in each 曝露人口 (人)

Population Histogram in Exposure concentration.



3500000

Urban

3000000

Rural 2500000 2000000



1500000 1000000 500000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Exposure Concentration Category 年平均PM2.5曝露濃度 カテゴリー

In the Urban area, Major contributor is “indoor w/o emission”, this mean source of pollutants is outdoor, and stay duration to indoor is much longer than duration at outdoor. Still exposure in rural area is higher than urban area due to the high usage of biomass fuel in Kitchen and Heating.

28

Result from Exposure Model

This result is still preliminary. values are not yet validated.

Average PM2.5 exposure concentration for Female, age 60-64 unemplyed (㎍/m3)

This result is still preliminary. values are not yet validated.

Average PM2.5 exposure concentration for Male, age 65-69, unemployed (㎍/m3) 29

30

Comparison between all province (Urban / Rural)

甘粛

青海

寧夏

新疆

甘粛

青海

寧夏

新疆

陝西

チベット

雲南

貴州

陝西

チベット

雲南

貴州

四川

重慶

海南

広西

広東

湖南

湖北

河南

山東

江西

福建

安徽

浙江

江蘇

上海

黒龍江

吉林

遼寧

内モンゴル

山西

河北

微環境E(屋外)低 ME-E(M) (Outdoor-Mid) 微環境E(屋外)中 ME-E(H) (Outdoor-High) 微環境E(屋外)高 ME-D (Indoor-w/o-emission) 微環境D(屋内・発生源なし) ME-C (Indoor-Lighting) 微環境C(照明) ME-B (Indoor-Heating) 微環境B(暖房) ME-A (Indoor-Cooking) 微環境A(調理+給湯)

天津

北京

四川

ME-E(L) (Outdoor-Low)

1800is still This result 1600 preliminary. values1400 are not 1200 yet validated. 1000 800 600 400 200 0

海南

広西

広東

湖南

湖北

河南

山東

江西

福建

安徽

浙江

江蘇

上海

黒龍江

吉林

遼寧

内モンゴル

山西

河北

天津

北京

100 80 60 40 20 0

重慶

ME-E(L) (Outdoor-Low) 微環境E(屋外)低 ME-E(M) (Outdoor-Mid) 微環境E(屋外)中 ME-E(H) (Outdoor-High) 微環境E(屋外)高 ME-D (Indoor-w/o-emission) 微環境D(屋内・発生源なし) ME-C (Indoor-Lighting) 微環境C(照明) ME-B (Indoor-Heating) 微環境B(暖房) ME-A (Indoor-Cooking) 微環境A(調理+給湯)

This result is still 160 preliminary. 140 values are not 120 yet validated.

Average PM2.5 exposure (Upper: Urban Lower: Rural) 30

PM2.5一日平均暴露濃度(μ g/m3)

1400

1200

3500 This result is still 1000 preliminary. 3000 values 800 are not yet2500 validated. 600 2000

400

1500

500

0 0歳 1-4歳 5-14歳 15-19歳・有職 15-19歳・無職 20-24歳・有職 20-24歳・無職 25-29歳・有職 25-29歳・無職 30-34歳・有職 30-34歳・無職 35-39歳・有職 35-39歳・無職 40-44歳・有職 40-44歳・無職 45-49歳・有職 45-49歳・無職 50-54歳・有職 50-54歳・無職 55-59歳・有職 55-59歳・無職 60-64歳・有職 60-64歳・無職 65-69歳・有職 65-69歳・無職 70-74歳・有職 70-74歳・無職 0歳 1-4歳 5-14歳 15-19歳・有職 15-19歳・無職 20-24歳・有職 20-24歳・無職 25-29歳・有職 25-29歳・無職 30-34歳・有職 30-34歳・無職 35-39歳・有職 35-39歳・無職 40-44歳・有職 40-44歳・無職 45-49歳・有職 45-49歳・無職 50-54歳・有職 50-54歳・無職 55-59歳・有職 55-59歳・無職 60-64歳・有職 60-64歳・無職 65-69歳・有職 65-69歳・無職 70-74歳・有職 70-74歳・無職

0

0歳・男 0歳 1-4歳・男 1-4歳 5-14歳・男 5-14歳 15-19歳・有職・男 15-19歳・有職 15-19歳・無職・男 15-19歳・無職 20-24歳・有職・男 20-24歳・有職 20-24歳・無職・男 20-24歳・無職 25-29歳・有職・男 25-29歳・有職 25-29歳・無職・男 25-29歳・無職 30-34歳・有職・男 30-34歳・有職 30-34歳・無職・男 30-34歳・無職 35-39歳・有職・男 35-39歳・有職 35-39歳・無職・男 35-39歳・無職 40-44歳・有職・男 40-44歳・有職 40-44歳・無職・男 40-44歳・無職 45-49歳・有職・男 45-49歳・有職 45-49歳・無職・男 45-49歳・無職 50-54歳・有職・男 50-54歳・有職 50-54歳・無職・男 50-54歳・無職 55-59歳・有職・男 55-59歳・有職 55-59歳・無職・男 55-59歳・無職 60-64歳・有職・男 60-64歳・有職 60-64歳・無職・男 60-64歳・無職 65-69歳・有職・男 65-69歳・有職 65-69歳・無職・男 65-69歳・無職 70-74歳・有職・男 70-74歳・有職 70-74歳・無職・男 70-74歳・無職 0歳・女 0歳 1-4歳・女 1-4歳 5-14歳・女 5-14歳 15-19歳・有職・女 15-19歳・有職 15-19歳・無職・女 15-19歳・無職 20-24歳・有職・女 20-24歳・有職 20-24歳・無職・女 20-24歳・無職 25-29歳・有職・女 25-29歳・有職 25-29歳・無職・女 25-29歳・無職 30-34歳・有職・女 30-34歳・有職 30-34歳・無職・女 30-34歳・無職 35-39歳・有職 35-39歳・有職・女 35-39歳・無職 35-39歳・無職・女 40-44歳・有職 40-44歳・有職・女 40-44歳・無職 40-44歳・無職・女 45-49歳・有職 45-49歳・有職・女 45-49歳・無職 45-49歳・無職・女 50-54歳・有職 50-54歳・有職・女 50-54歳・無職 50-54歳・無職・女 55-59歳・有職 55-59歳・有職・女 55-59歳・無職 55-59歳・無職・女 60-64歳・有職 60-64歳・有職・女 60-64歳・無職 60-64歳・無職・女 65-69歳・有職 65-69歳・有職・女 65-69歳・無職 65-69歳・無職・女 70-74歳・有職 70-74歳・有職・女 70-74歳・無職 70-74歳・無職・女

PM2.5一日平均暴露濃度(μ g/m3)

Comparison between all Individual attribute group

350 This result is still preliminary. 300 values are not yet250 validated.

200 ME-E(L) (Outdoor-Low) 微環境E(屋外)低 ME-E(M) (Outdoor-Mid) 微環境E(屋外)中 ME-E(H) (Outdoor-High) 微環境E(屋外)高 ME-D (Indoor-w/o-emission) 微環境D(屋内・発生源なし) ME-C (Indoor-Lighting) 微環境C(照明) ME-B (Indoor-Heating) 微環境B(暖房) 微環境A(調理+給湯) ME-A (Indoor-Cooking)

150

100

50

微環境E(屋外) PM2.5 average Exposure concentration in Each age group ( Beijing, Uraban) 微環境D(屋内・発生源なし) 微環境E(屋外)低 ME-E(L) (Outdoor-Low) 微環境C(照明) 微環境E(屋外)中 ME-E(M) (Outdoor-Mid) 微環境E(屋外)高 微環境B(暖房) ME-E(H) (Outdoor-High) 微環境D(屋内・発生源なし) ME-D (Indoor-w/o-emission) 微環境A(調理+給湯) 微環境C(照明) 微環境B(暖房) ME-B (Indoor-Heating) 微環境A(調理+給湯) ME-A (Indoor-Cooking) ME-C (Indoor-Lighting)

200

1000

0

黒龍江省・農村におけるコホート別PM2.5曝露濃度

31

Summary

Transportation Model  We developed the reconciliation method to estimate more reliable international and domestic traffic data.  We are developing the method to decompose the passenger and freight transportation demand by individual attribute, trip purpose, type of transportation and trip distance.  This analysis may improve the future prediction of transportation demand and its structure. Air Pollution Model  We developed the individual exposure model to estimate the human exposure from both indoor and outdoor air pollution, using WRF, CMAQ, roadside model and Exposure model.  We calculated individual exposure at the 1km or 10km mesh, so that we can estimate the population histogram of exposure concentration.  We developed the emission data from each road segment and the roadside model. More detail co-benefit analysis will be possible.

32

Thank you for your attention

33