WHY DOES THE WORLD APPEAR THE WAY IT DOES?

Report 6 Downloads 84 Views
WHY  DOES  THE  WORLD  APPEAR  THE  WAY  IT  DOES?   INTRODUCTION   •   Perceiving  provides  a  sense  of  what’s  real  and  what  exists   •   Perceiving  has  two  functional  roles  (thought  to  localize  to  two  separate  parts/streams  within  the  brain):     1.   Control  of  behavior/action   §   E.g.  optical  flow  (overrides  vestibular  system  in  balance  &  coordination)   2.   Recognition  &  awareness  of  the  world  (focus  of  this  course)   •   Realist  view:  our  experience  captures  the  way  the  world  is   o   Problem:  our  brain  has  to  guess  what’s  in  the  world  based  on  the  light  that  reaches  the  eye  –  but   these  images  are  in  2D  and  there’s  a  lot  of  different  factors  that  could  have  generated  this  image   •   Many  different  factors  create  the  structure  in  light:   1.   Reflectance  &  transmittance  properties  (e.g.  color,  lightness,  transparency,  translucency,  sub-­‐ surface  scattering,  gloss)   2.   3-­‐D  shape  (change  in  surface  pose  relative  to  light  source,  or  ‘shading’)   3.   Illumination  (intensity,  spectral  content,  shadow)   4.   Occlusion   •   We  can  usually  distinguish  different  sources  of  image  structure  even  when  they’re  locally  identical   o   The  reflectance  image  tells  us  what  the  intrinsic  pigments  are  (light  grey  &  dark  grey)   o   The  illumnance  image  tells  us  which  sides  are  being  illuminated  by  the  light  source  (change  in   surface  pose  relative  to  the  light  source  à  shading)   o   In  the  picture,  the  shading  edge  is  the  exact  same  as  the  reflection  edge,  however  our  brain  is  able   to  tell  that  these  edges  mean  different  things  à  has  to  somehow  take  context  into  account    

REFLECTANCE   •   When  we  see  the  surface  of  objects,  all  of  the  structure  and  light  (except  for  translucency  and  the   transparency)  is  created  by  the  way  the  light  strikes  the  object  and  is  reflected  back  into  our  eyes   o   Objects  omit  light  and  is  referred  to  as  a  secondary  light  source   •   Surface  normal:  Generalization  of  a  perpendicular,  or  90  degree  angle   •   Two  types/models  sufficient  to  capture  most  things  in  the  world   o   Diffuse,  or  ‘matte’,  or  ‘Lambertian  reflectance’:  when  we  talk  about  the  color  or  lightness  (subset  of   color)  of  an  object,  we  are  referring  to  our  perception  of  what  we  think  it’s  diffuse  reflectance  is   §   Light  hits  the  surface  and  is  scattered  uniformly  in  all  directions     o   Specular:  angle  of  incidence  =  angle  of  reflectance  relative  to  the  surface  normal   §   Mirror  is  a  perfectly  specular  surface   •   Objects  can  have  a  combination  of  diffuse  and  specular,  in  which  some  light  is  scattered  uniformly  and  some   light  is  reflected  according  to  the  angle  of  incidence   o   The  specular  model  can  also  have  a  blur  component  =  how  spread  out  or  scattered  the  specular   reflectance  is,  or  ‘micro  roughness’   •   Example  one:  What  would  happen  in  the  diagram  if  the  teapot  changed  color  from  white  to  black?   o   Answer:  the  arrows  (representing  light  reflectance)  would  be  smaller/thinner   •   Example  two:  What  would  happen  in  the  diagram  if  the  light  source  becomes  weaker?   o   Answer:  the  same  thing  -­‐  the  arrows  (representing  light  reflectance)  would  be  smaller/thinner   o   i.e.  we  can  create  the  exact  same  effect  by  changing  the  color  of  and  object  vs.  turning  the  lights   down  

COLOR   •   Color:  not  just  the  amount/proportion  of  light  that  is  reflected  (lightness),  but  its  spectral  content   (proportion  of  each  wave  length)   •   Lightness  (albedo):  the  proportion  of  light  a  surface  reflects  (it’s  about  the  object  –  we  talk  about  things   having  ‘lightness’,  not  ‘brightness’)   •   Brightness:  amount  of  total  light  (luminance)  projected  to  the  eye  from  something  (surface  or  light  source)   o   A  world  of  more  than  one  luminance  gives  rise  to  luminance  values.    

•   Contrast  is  a  measure  of  luminance  differences  divided  by  some  measure  of  overall  light  level   o   Example:  turning  the  ceiling  lights  on  when  using  a  projector  –  the  projector  is  Ifstill   oing  pot the  or same   thisdtea statue was view thing,  yet  it  is  harder  to  see  the  screen.  The  difference  between  the  light  and  dother ark  parts   o n   t he   position, the brightness o screen  are  still  the  same,  except  it  is  harder  to  distinguish  these  differences  when   the   lights   are  on.   would not change This  is  because  the  brain  doesn’t  just  look  at  differences  –  it  looks  at  differences  divided  by  the   overall  light  in  the  context.     o   This  is  known  as  ‘divisive  normalization’,  i.e.  standardization  

LAMBERTIAN  REFLECTANCE  (“MATTE”)  

Lambertian reflectanc

•   Lambert’s  law:  The  brightness  of  a  surface  patch  is  independent  of  viewing  direction;   it  only  depends  on  the  position(s)  of  the  light  source(s)  –  the  brightness  will  look  the   (“matte”) same  independent  of  where  you  view  it  from     o   Example:  If  this  tea  pot  was  viewed  from  some  other  position,  the  brightness   of  visible  patches  would  not  change     o   But  why  doesn’t  the  brightness  change?  The  arrows  are  all  different  sizes,   so  if  they  are  viewed  from  different  directions,  it  suggests  that  the   brightness  should  change     o   The  total  amount  of  reflected  light  (lumination)  depends  on  both  the   amount  of  light  striking  the  surface  (illumination)  and  the  proportion  of   light  the  surface  reflects  (its  lightness)     o   Brightness  level  (illumination)  changes  at  the  exact  same  rate  as  the  size  of  that  surface  patch  area   But why doesn’t the brightness change? you  are  viewing  –  so  the  relative  amount  of  light  (lumination)  per  area  stays  the  same  

are all different sizes, so if they are viewe different directions, it suggest that the b LUMINANCE   should change •   If  we  hold  surface  orientation  fixed,  then  the  following  simple  equation   holds:   o   Luminance  (what  reached  the  eye)  =  reflectance  (or  lightness)  x  illumination   o   Fundamental  ambiguity   •   What  about  luminance  ratios?  Imagine  having  a  set  of  papers  and  you  vary  the  illumination.  As  you  change   the  amount  of  illumination,  all  of  the  papers  are  multiplied  by  a  new  number.  Thus  the  ratios  of  two   different  luminances  coming  from  each  paper  will  remain  constant,  i.e.  the  illumination  term  cancels   o   But…  for  example,  there’s  an  infinite  number  of  ways  to  get  a  2:1  ratio  –  at  most,  this  could  only   explain  how  it  is  that  you  could  make  judgments  like  “surface  x  is  twice  as  light  as  surface  y”,  not   “surface  x  is  light  grey  and  surface  y  is  very  dark  grey”   •   Gilchrist’s  Dome  Experiments  –  looked  at  the  simplest  percept  of  a  surface  (i.e.  the  dome  covering   participants’  eyes)  to  see  how  this  would  be  perceived     o   FOUND:  edge  ratios  can  only  give  you  relative  lightness  measures   •   Staircase  Gelb  –  putting  down  progressively  lighter  squares   o   FOUND:  the  highest  luminance  at  any  time  appears  to  be  white  

PERCEPTION  OF  AMBIGUOUS  RATIOS   •   Inference:  An  anchoring  principle  is  used  to  disambiguate  luminance  ratios     o   Transforms  the  relative  values  of  edge  ratios  into  an  absolute  scale  of  perceived  lightness  values   (i.e.,  perceived  shades  of  black,  grey,  and  white)     o   Claim:  Highest  luminance  assumed  to  be  a  white  surface  (~90%  reflectance)   •   However,  most  scenes  don’t  have  every  shade,  i.e.  they  are  a  subset  of  the  full  scale  of  luminance  values   o   The  anchoring  problem:  where  to  locate  the  range  of  luminance  values  on  the  scale  of  perceived   gray  shades?  (a  similar  problem  exists  for  color  –  we  can  select  a  “target  white  point”  to  adjust  the   overall  color  tint  on  a  computer  display,  thereby  changing  what  we  call  ‘white’)   •   ‘Anchoring’  shown  to  work  with  Mondrians  in  a  simulated  illumination  experiment,  such  that  the  square   with  the  highest  luminance  at  any  time  was  perceived  to  have  a  much  higher  reflectance  than  its  true  value   •   This  “highest  luminance”  rule  failed  in  a  3D  world  composed  of  a  single  reflectance  –  in  a  room,  you  have   some  sense  of  illumination  or  “light  field”   o   And  it  makes  sense  given  the  reflectance  distributions  of  natural  scenes  à  things  are  hardly  ever   white,  so  it  would  be  strange  to  just  always  call  the  lightest  thing  white   o   Note  the  importance  of  contrast  in  defining  lightness  à  3D  world  gives  us  a  lot  more  information    

•   A  black  room  with  black  objects  only  looked  mid-­‐grey  in  the  room  of  one  reflectance/color   o   This  is  due  to  shadow  strength  as  a  cue  to  lightness/reflectance     o   Variations  in  shadow  strength  is  minimal  in  a  white  room  with  white  objects  à  90%  of  the  light  is   reflected  and  bounces  around  the  room,  filling  any  shadows  that  would  usually  be  there   o   On  the  other  hand,  a  black  room  with  black  objects  have  higher  variations  à  95%  of  the  light  it   absorbed  and  only  5%  of  light  is  reflected,  leaving  shadows  in  place   o   The  anchoring  rule  would  suggest  that  every  shade  is  perceived  as  white  in  the  experiment,  but  this   is  not  true  (black  was  perceived  as  mid-­‐grey)   •   Checker  shadow  illusion:  If  the  ratio  remains  the  same  but  becomes  globally  deeper,  this  is  a  cue  that  the   darkness  is  due  to  a  shadow   •   Contrast:  the  difference  divided  by  the  average,  i.e.  the  differences  are  scaled  by  the   standard  

Sub-surface scattering

SUB-­‐SURFACE  SCATTERING   •   Changes  in  color  can  also  tell  us  something  about  the  thickness  of  the  object   •   Subsurface  scattering  of  skin   Transparency preserves image structure, translucency o   Layered  objects  that  have  different  properties  on  each   layer   blurs the structure of underlying surfaces o   Notice  the  decreased  variation  in  shadows  (increased  softening)  due  to  sub-­‐surface  scattering   •   Transparency  preserves  image  structure,  translucency   blurs  the  structure  of  underlying  surfaces  (i.e.  light   scattered)   •   Two  types  of  constraints  on  transparency     1.   There  must  be  geometric  continuity  of  the   contours   2.   Photometric  (relative  intensities):  the  contrast  polarity  (sign)  of  an  underlying  contour  must  be   preserved   •   Metelli’s  generative  model  of  transparency  (pre-­‐computer  graphics)  –  used  a  wooden  disc  with  a  gap  in   which  light  was  let  through   o   Alpha  =  angle  of  the  open  sector  (gap)  à  the  higher  aplpha  is,  the  more  transparent  the  disc  will   appear  when  spun  very  fast,  i.e.  the  more  light  let  through   o   Geometric  constraints  are  not  captured  in  these  equations,  they  are  purely  photometric  constraints     o   Predicts  that  alpha  should  be  independent  of  the  color  of  the  disc,  however,  this  is  not  true  à  if  the   disc  is  a  lighter  color  (e.g.  white),  more  light  is  reflected     §   i.e.,  p  is  a  weighted  sum  of  the  light  that  gets   through  from  the  background  and  the  light  that   (1-α) gets  reflected  from  the  disc   t •   Ordinal  constraints  on  transparency:  polarity  and  magnitude  

Metelli’s generative model of transparency

nal constraints on transparency:      

(1)  If  polarity  is  preserved,  it  is  consistent  with  the  

   

The magnitude of contrast change provid the opacity of a transparent surface (its “

transparency or of  there  being  a  transparent  surface  –  occurring   possibility     illumination in  a  region  where  the  contrast  goes  down  

o Note Non-­‐reversing   junctions,   as  opposed   to  snot ingle   that geometric constraints are captured in t reversing   j unctions,   a re   a mbiguous   a s   t o   w hich   equations, they are purely photometric constraints layer  is  on  top  and  which  is  on  bottom   o Note  the  non-­‐reversing  junctions  of  shadows    

    transparency (2)  The  m agnitude  of  contrast  change  provides   information  about  the  opacity  of  a  transparent  surface  (its     “hiding  p ower”;  how  opaque  it  is  indicated  b y  lower   contrast)           neither