Wireless Communication Receiver System Design

Report 6 Downloads 212 Views
Session # C 10

Wireless Communication Receiver System Design

권상욱, 고승수, 송형석, 최성훈 이재욱교수님 종합설계

한국항공대학교

Outline Application bands: GPS, PCS, Bluetooth. ① Antenna: PIFA (Tool: CST, ADS) – Independency of band. ② Filter: Triplexer (Tool: Ansoft, ADS) – Square Open-Loop Resonator Filters. ③ LNA: MMIC (Tool: ADS) – Cascode. – Degeneration. – Simulation of extraction S-parameter.

Motivation Individual Topic + Wireless communication

Fig 1. GPS

Fig 2. PCS

Wireless Receiver System

Fig 3. Bluetooth

Pros & Cons -PROSRF Passive device + RF Active device System synthesize -CONS• We don’t show total system’s simulation from one tool. • But we prove that simulation is available from impedance matching at each I/O port.

Design of Triple Bands PIFA Antenna Size : 14.5 x 17 x 7 [mm] For GPS : 1.57 [GHz] PCS : 1.73~1.87 [GHz] US-PCS : 1.85~1.99 [GHz] Bluetooth: 2.4~2.49 [GHz] Fig 4. Geometry of built-in antenna

Fig 5. Plane figure of PIFA

Fig 6. Length of PIFA (unit: [mm])

Independent control of Each Band

Fig 7. simulated return loss for the proposed PIFA

Fig 8. simulated return loss with p.sweep

Parameter • Patch’s form • Feeding point • Capacitive load Fig 9. simulated return loss with p.sweep

Radiation Pattern and Gain of PIFA

Fig10. Simulated 3-D frequency pattern

Up to 2 dB in all requested frequency region.

Compared with Other Papers

GOOD

NORMAL

BAD

Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters.[7]

Fig 11. (a) Capacitively loaded transmission line resonator and (b) a microstrip Slowwave open-loop resonator on substrate (not shown).

Fig 12. Modeled coupling coefficients of coupled microstrip slow-wave open-loop resonators (a) Magnetic coupling (b) Mixed coupling and (c) Electric coupling.

Design of Four pole open - loop resonators filters.

Port1

Port2

Fig 13. BPF(1) - GPS

Port1

Port2

Fig 14. BPF(2) - PCS

Port1

Port2

Fig 15. BPF(3) - Bluetooth

Design of A Triplexer for GPS, PCS, Bluetooth.[8] Port3

Port4

Port2

Port1

Fig 16. Layout of Triplexer

Fig 17. Result of Triplexer

0.1698pF 125.5nH INPUT PNUM=1 RZ=50Ohm IZ=0Ohm

60.19nH 41.54pF

0.1698pF

0.08144pF 60.19nH 0.2461nH 41.54pF 0.2461nH 0

0

0.1543pF 104.6nH 50.16nH 34.61pF 0.07014pF

0

60.19nH 41.54pF

0.074pF 0.2236nH 34.61pF 125.5nH

0.1543pF 50.16nH

0

0.03363pF 0.1016nH 41.54pF 0

GPS PNUM=2 RZ=50Ohm IZ=0Ohm

PCS PNUM=3 RZ=50Ohm IZ=0Ohm

0.2236nH 0.07014pF 60.19nH 0.1016nH

0

Fig 18. Schematic of Triplexer

BLUETOOTH PNUM=4 RZ=50Ohm IZ=0Ohm

•Result of Triplexer’s Layout is not so good. (Bad matching for bluetooth region.) So we used ideal lumped element circuit.

LNA (GPS) SPEC •Freq: 1575 [MHz] •Gain: 21.45 [dB] •NF: 0.193 [dB] •IIP3: 0.152 [dB] •BW: 1 [MHz] Fig 19. Schematic of LNA(GPS)

Fig 20. S-Parameter

Fig 21. Noise figure

Fig 22. IIP3

LNA (PCS) SPEC •Freq: 1860 [MHz] •Gain: 21.994 [dB] •NF: 0.232 [dB] •IIP3: 13.492 [dB] •BW: 20 [MHz] Fig 23. Schematic of LNA(PCS)

Fig 24. S-Parameter

Fig 25. Noise figure

Fig 26. IIP3

LNA (Bluetooth) SPEC •Freq: 2450 [MHz] •Gain: 19.911 [dB] •NF: 0.707 [dB] •IIP3: 2.167 [dB] •BW: 100 [MHz] Fig 27. Schematic of LNA(Bluetooth)

Fig 28. S-Parameter

Fig 29. Noise figure

Fig 30. IIP3

LNA Spec comparison Spec Item(GPS)

Ours

Maxim[9]

Spec Item(PCS)

Ours

Paper[10]

DC Current

5.5mA

3mA

DC Current

5.5mA

16mA

Gain

21.4

14.7

Gain

22

17

NF

0.193

1.6

NF

0.232

3.4

IIP3

0.15

-4.3

IIP3

13.492

9

S11

-29.6

-9.5

S11

-29

-11

S22

-32.1

-14.5

S22

-12.6

-14.5

Spec Item(Bluetooth)

Ours

Paper[11]

DC Current

5.5mA

5.4mA

Gain

19.9

17.18

NF

0.707

2.82

IIP3

2.167

-5.16

Input VSWR

1.1

1.1

Our results are better than papers altogether.

Conclusion (1) Fig 31. (PIFA) & (Triplexer + LNA) Matching

Fig 32. Impedance PIFA≒50Ω

Fig 33. Impedance Triplexer+LNA≒50Ω

Conclusion (2) LNA(GPS)

Triplexer

LNA(PCS)

LNA (Bluetooth)

Fig 34. Schematic of Triplexer + LNA

Conclusion (3)

Fig 35. Result of PIFA

Fig 36. Result of PIFA + Triplexer

Fig 37. Result of PIFA + Triplexer + LNA

Reference [1] Antennas and Propagation Society International Symposium, 2002. IEEE Volume 4, 16-21 June 2002 Page(s):528 531 vol.4 Digital Object Identifier 10.1109/APS.2002.1017038; “Compact PIFA for GSM/DCS/PCS triple-band mobile phone”; Wen-Shyang Chen, Tzung-Wern Chiou, Kin-Lu Wong. [2] ”Design of a Triple-band PIFA for the Hand-held Terminal”; Hoon park, Jae-hoon Choi. [3] Antennas and Propagation, IEEE Transactions on Volume 51, Issue 5, May 2003 Page(s):1124 – 1126 Digital Object Identifier 10.1109/TAP.2003.811524; “Dual-band planar inverted F antenna for GSM/DCS mobile phones”; ShihHuang Yeh, Kin-Lu Wong, Tzung-Wern Chiou, Shyh-Tirng Fang. [4] Antennas and Wireless Propagation Letters, IEEE Volume 3, Issue 1, 2004 Page(s):104 – 107 Digital Object Identifier 10.1109/LAWP.2004.830021 ; “GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals”; Yong-Sun Shin, Byoung-Nam Kim, Won-Il Kwak, Seong-Ook Park. [5] Volume 15, Issue 10, Oct. 2005 Page(s):630 - 632 Digital Object Identifier 10.1109/LMWC.2005. 856692; “Meandered multiband PIFA with coplanar parasitic patches”; Karkkainen, M.K. [6] 한국전자파학회 , 한국전자파학회논문지 제16권 제1호, 2005. 1, pp. 66 ~ 77 (12pages); “다중대역을 가지는 SAR 저 감용 광대역 PIFA 설계 “; 최동근(Donggeun Choi), 신호섭(Hosub Shin) , 김남(Nam Kim), 김용기(Yongki Kim). [7] IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997; “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters”; Jia-Sheng Hong, Member, IEEE, and Michael J. Lancaster, Member, IEEE. [8] IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006; “Design of Matching Circuits for Microstrip Triplexers Based on Stepped-Impedance Resonators”; Pu-Hua Deng, Ming-Iu Lai, Student Member, IEEE, Shyh-Kang Jeng, Senior Member, IEEE, and Chun Hsiung Chen, Fellow, IEEE. [9] www.Maxim ic.com [10] Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Volume 2, 31 May-3 June 1998 Page(s):73 - 76 vol.2 Digital Object Identifier 10.1109/ISCAS.1998.706844 ; “PCS 1.8 GHz CMOS LNA with on-chip DC-coupling for a subsampling direct conversion front-end”; Parssinen A., Lindfors S., Ryynanen J., Long S.I., Halonen, K. [11] “A Fully Integrated 2.4GHz 0.25μm CMO SLow Noise Amplifier(Bluetooth)”; Wang Wen-qi, Senior Member, IEEE, Xu Liang, Tang Xue-feng and Zhan Fu-chun School of Communication and Information Engineering ,Shanghai University 149 Yan Chang Road ,Shanghai 200072, ChinaSummary: A 1.8 GHz CMOS LNA, which is suitable as a front-end in a direct conversion radio receiver, has been designed. The LNA is designed to drive a capacitive load such as the load of a subsampling mixer.