Calculus Review Section by: javier

Report 7 Downloads 138 Views
Calculus Review Section by: javier

Chapter 1 limits and Indeterminants

Chapter 1: Limits Indeterminants

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , Limits

∞ ∞

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , Limits PIM, Graph, EM, ReWrite,

∞ ∞

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , ∞ ∞ Limits PIM, Graph, EM, ReWrite, L’Hopital,

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , ∞ ∞ Limits PIM, Graph, EM, ReWrite, L’Hopital, Taylor Series Example: lim xx

In

0° ×ln× hiya

x→0+

e×k¥ ekxx

¥y

=

h¥= F kina

.

!,%

=

=

E

Kai

ftp.xlux

=

@

xz

=

line

not

=

Eµ ;

'T

=e° 2

=

'

Z

×

°

c

,

Chapter 1: Limits

Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , ∞ ∞ Limits PIM, Graph, EM, ReWrite, L’Hopital, Taylor Series

Example (fibonacci golden ratio): suppose an+1 = an + an−1 is the fibonacci sequence determine the limit an+1 } 13,2434 lim An ={ 1,112,315,8 n→∞ an -

-

.

kf÷='t±÷÷

,

THE ,¥FI¥¥

=

1

,

2,1-5,1-67

,

-

bn= g.

.

ba

Itt

{ Htylt'T { lttntt

't 's

" '

's 't ,

'T

't

} .

'

1.6/1-6251%61

kntltnttl

.

set

An

An

=

,

An

.

,

A

=

'

'

3

Agy

Any

+

,

+

An

E[

=

1

+

Anat

±

It

=

Eilt ,

,

.A÷IL L

AT

AT

AT

ksm

'

ti

-

o

=£±F54T÷ 2

L=1±t

" '

l±a¥d*+£÷ ) ,=±#9dTaE

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , ∞ ∞ Limits PIM, Graph, EM, ReWrite, L’Hopital, Taylor Series Example: lim x2 · ln(x) x→0+

Chapter 1: Limits Indeterminants ∞ − ∞, ∞0 , 00 , ∞ · 0, 1∞ , 00 , ∞ ∞ Limits PIM, Graph, EM, ReWrite, L’Hopital, Taylor Series ! " 1 x Example: lim 1 + x→∞ x

Chapter 2 Integration

Chapter 2: Integration by # u-sub $ √ 8 + xdx

u

=

due

8tr×

tzxtdx

HE

.

jam €m£¥tx .

A

f

=

=

§

ru

-

.

.

du

Cut ) du

µ8u"Ddu }u" 2- 2.8 }u" "

=

=

=

2

2

-

.

.

§(

strxjhtc 2.85 ( strxjh .

+

c

Chapter 2: Integration by # parts ln xdx uv

=

xlnx

=

=

=

u

=1nx

}:

-

xlnx

xlnx

dkdx

du= txdx heck

frd9

fttxd

-

-

-

fdx Xtc

d#(

xkx

-

)

xtc

ftaxjfluxtxdadnxjddxatdd,

=

lnxtxtx

=

=

Inx

-

1

to

(c)

Chapter 2: Integration by # parts sec3 xdx UV

=

-

§c3

secxdx

=

=

dkseixdx

sec 's

du= secxtaaxax

V=taux

zfseaxax

fvda

seoxtaux

=

U

=

=

secxtanx

+1

"

ltanxtsecx

1

+

(

ftanxsecxtahxdx

fseaxax.tk#ax+lnlmxtsecx1)fsec3xdx=secxtaux-/tan2xsecxdxfsec3xdx=secxtanx-/@ec2x-hsecxdxfsec3xdx=secxfanx Jedxdx Jsecxdx +

-

2

2

¢ec3xd×=

fseaxdx

=

sextant fsecxdx sextant

fsecx

.FI?ftseJldx2fseaxax.saxtauxtfqIaxtEIetxY#M tanxtsecx duisedxtsecxtanxdx -

Zfseihdlseexfanxtfdy

Chapter 2: Integration by # trig sub 1 dx 3 + 4x2

Chapter 2: Integration ' ×2KTDHH

⇐×E×,y)=(÷t±atx÷tt÷z ) (

by PFD #

x2 (x

=

1 dx + 1)(x + 2)

duftxaxt

If

1

=

AK )l×tD( xtz )

+

×2(xtD(xtD

B(xtDAdD+cP(xtD+DX4XtD

iii;t÷ljisnf÷ItIIknHk .IE#EtsfIIfkFixIFFI*.s+u

t*d×t§Mt}f±µ×

1=6

3+3+2

At

2=4+6+6-1 2=12 -

9

Tz=A

A

th

.**

Chapter 2: Integration

tnyrixxi

improper integrals # ∞ 2 sin (x) dx x2 1 µIgQdx£⇐edx

=

finite

Chapter 3 Applications

Chapter 3 Applications Work lifting chains, empty water tanks, pull spring s etc,

Chapter 3 Applications Center of mass lamina , wires, etc.

Chapter 3 Applications differential equations 2 +1 dy = yx+1 dx

f ÷f÷ -

,

arotauy

=

ken )

tc

Chapter 3 Applications differential equations: suppose f = cos(x) + i sin(x) solve df icosx = if f! dx =

save

:

ftp.fidx hf=

e



e

f=ei× ei×=

cosxksinx

sinx

-

+

ifsinxt 'D ')=i(

Tass

.

jdgf×=

-

id¥×= -

isinx

(

×=

if

cos

eosxtisinx

iddfe are EE ¥

-

×

)

Chapter 3 Applications Fluid force

Chapter 3 Applications Fluid force

free

do

Chapter 3 Applications Fluid force