Calculus II Sequence & Series: Cauchy Condensation Test by: javier

Report 33 Downloads 87 Views
Calculus II Sequence & Series: Cauchy Condensation Test ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

by: javier

Understanding the Cauchy Condensation Test

The Key Idea

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it..

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



a(n) ≈



2n · a(2n )

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



∑ a(n) ≈ 2n · a(2n ) ∑1

example:

n