Calculus II Sequence & Series: Cauchy Condensation Test by: javier

Report 2 Downloads 76 Views
Calculus II Sequence & Series: Cauchy Condensation Test ∞ ∑ n=1

a(n) ≈

∞ ∑

2n a(2n )

n=1

by: javier

Understanding the Cauchy Condensation Test

The Key Idea

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it..

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it.. from it we get

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

∑ ∑ 1∑ n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it.. from it we get ∞ ∑ n=1

a(n) ≈

∞ ∑ n=1

2n a(2n )

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



a(n) ≈



2n · a(2n )

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



∑ a(n) ≈ 2n · a(2n ) ∑1

example:

n

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



∑ a(n) ≈ 2n · a(2n ) ∑ 1

example:

n2

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



a(n) ≈ ∑

example:



2n · a(2n )

1 n(ln n)3

Examples using CCT □

If a(n) is decreasing



and a(n) > 0 for all large n′ s

then



a(n) ≈ ∑

example:



2n · a(2n ) 1 n(ln n)(ln(ln n))

Sterlings Approximation

Sterlings Approximation n! ≈

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈

example:



n2 (2n − 1)!

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

∑ n! 5n

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

∑ 2n n! nn

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

∑ 5n n! nn

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈ 1

example:

(n!) n lim n→∞ n

( n )n √ 2πn · e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

∑ (n!) 1n n

( n )n √ 2πn · e