CHAPTER 102 FOURIER SERIES FOR A NON-PERIODIC FUNCTION

Report 11 Downloads 58 Views
CHAPTER 102 FOURIER SERIES FOR A NON-PERIODIC FUNCTION OVER RANGE 2π EXERCISE 363 Page 1071 1. Show that the Fourier series for the function f(x) = x over the range x = 0 to x = 2π is given by: 1 1 1 sin 2 x + sin 3 x + sin 4 x + ...) 2 3 4

f(x) = π – 2(sin x +

The function f(x) = x is not periodic. The function is shown below in the range 0 to 2π and is then constructed outside of that range so that it is periodic of period 2π (see broken lines) with the resulting saw-tooth waveform



For a Fourier series:

∑( a

f(x) = a 0 +

n

cos nx + b n sin nx)

n =1

a0 =

an =

1 2π 1

π

∫ ∫

2π 0

2π 0

f ( x) d x =

1 2π



f ( x) cos nx d x =

2π 0



xd x =

1

π



2π 0

1  x2  1  4π 2  = − 0 = π    2π  2  0 2π  2 

x cos nx d x 2π

1  x sin nx sin nx  = −∫ d x  n π n 0

by parts (see Chapter 68)



1  x sin nx cos nx  = + π  n n 2  0 =

1  cos 2nπ 0+  π  n2

cos 0      −  0 + 2  = 0 n   

1516

© 2014, John Bird

bn =

1

π∫

2π 0

f ( x) sin nx d x =

1

π∫

2π 0

x sin nx d x 2π

1  − x cos nx  − cos nx   =  − ∫ d x n n   0 π 

by parts



1  − x cos nx sin nx  =  + n n 2  0 π =

1  −2π cos 2nπ sin 2nπ   sin 0   +   −  0 + 2   2 π  n n n   

=

1  −2π cos 2nπ  −2 = cos 2nπ   π n n 

2 2 2 2 2 When n is odd or even, b n = − . Thus b 1 = 2, b 2 = − , b 3 = − , b 4 = – , b 5 = − , and so n 4 2 3 5

on Thus i.e.

f(x) = x = π – 2 sin x – x = π – 2(sin x +

2 2 2 2 2 sin 2x – sin 3x – sin 4x – sin 5x – sin 6x + … 3 4 5 6 2

1 1 1 1 1 sin 2x + sin 3x + sin 4x + sin 5x + sin 6 x + ... ) 3 4 6 2 5

for values of f(x) between 0 and 2π. For values of f(x) outside the range 0 to 2π the sum of the series is not equal to f(x)

2. Determine the Fourier series for the function defined by:  1 − t , when − π 〈 t 〈 0 f(t) =   1 + t , when 0 〈 t 〈 π Draw a graph of the function within and outside of the given range.

The periodic function is shown in the diagram below

1517

© 2014, John Bird

1 a0 = 2π

π

1 dt f (t )= 2π

∫π −

=

a= n

1

{∫

0 −π

(1 − t ) d t + ∫

π 0

}

  t 2  0  t 2  π   t −  + t +     2  −π  2  0   1   π2  π 2   2π 2π 2 π + + = 1+ 2  π +  − ( 0 )  =  = 2  2   2π 4π 2   2π  

1 (1 + t ) d= t 2π

1  π 2      ( 0 ) −  −π −  + π 2π   2    

π

f (t ) cos nt d= t π∫π −

π {∫ 1

π

0 −π

(1 − t ) cos nt d t + ∫ (1 + t ) cos nt d t 0

}

=

π {∫

=

1  sin nt t sin nt cos nt   sin nt t sin nt cos nt  by integration by parts − − + + +   π n n n 2  −π  n n n 2  0

=

1   cos 0   cos(−nπ )    cos nπ   cos 0    +  0 + 0 + −0+ 0+   0 − 0 − 2  −  0 − 0 −      π   n   n2 n2   n 2      

=

1  1 cos(−nπ ) cos nπ 1  1 + = −  ( 2 cos nπ − 2 ) − 2 + π n n2 n2 n2  π n2

1

0 −π

π

( cos nt − t cos nt ) d t + ∫ 0 ( cos nt + t cos nt ) d t

} π

0

= When n is even,

2 4 ( −1 − 1) =− 2 π (1) π

a1 =

When n = 3,

a3 =

When n = 5,

a5 =

1

π

π

∫π −

2 ( cos nπ − 1) π n2

an = 0

When n = 1,

b= n

since cos(–nπ) = cos nπ

2 4 ( −1 − 1) =− 2 π (3) π (3) 2 2 4 ( −1 − 1) =− 2 π (5) π (5) 2

f (t ) sin nt d= t

π {∫ 1

0 −π

and so on π

(1 − t ) sin nt d t + ∫ (1 + t ) sin nt d t 0

}

=

π {∫

=

1  cos nt t cos nt sin nt   cos nt t cos nt sin nt  − + − + − − + n n n 2  −π  n n n 2  0 π 

1

π

( sin nt − t sin nt ) d t + ∫0 ( sin nt + t sin nt ) d t −π 0

} π

0

by integration by parts

  cos 0    cos(−nπ ) π cos(−nπ )  + 0 − 0 −  − − − 0    −  n n n    1   =   π  cos nπ π cos nπ   cos 0   +  − − + 0 −  − + 0 + 0   n n n        =

1  1 cos(−nπ ) π cos(−nπ ) cos nπ π cos nπ 1  + − − +  =0 − + π n n n n n n 1518

since cos nπ = cos(–nπ) © 2014, John Bird



Substituting into f(t) = a0 + ∑ ( an cos nt + bn sin nt ) n =1

gives:

f(t) =

i.e.

f(t) =

π 2

π 2

+1 −

+1−

4

cos t −

π

4 4 cos 3t − cos 5t − ... + 0 2 π (3) π (5) 2

4 cos 3t cos 5t   cos t + 2 + 2 + ...  π 3 5 

3. Find the Fourier series for the function f(x) = x + π within the range –π < x < π

The function is shown sketched below



f(x) = a 0 +

∑( a

n

cos nx + b n sin nx)

n =1

1 a0 = 2π

an =

π

∫π −

1 f ( x) d x = 2π

π

1

f ( x) cos nx d x π∫π −

π

1  x2 1  π 2   π2  2 − = x π π + = + − π 2  = π ( x + π ) d x     ∫ −π   2π  2  −π 2π  2   2  π

=

1

π

( x + π ) cos nx d x= π∫π −

π

1

( x cos nx + π cos nx) d x π∫π −

π

1  x sin nx sin nx π  =  by parts (see Chapter 68) d x + sin nx  −∫ n n π n  −π π

=

=

1  π sin nπ cos nπ π   −π sin(−nπ ) cos(−nπ ) π  + + sin nπ  −  + + sin(−nπ )     π  n n2 n n n2 n    =

bn =

1

π

1  x sin nx cos nx π  + + sin nx   2 π n n n  −π

1  cos nπ π  n 2 1

  cos(−nπ )   0 −  = n2   

π

f ( x) sin nx d x = ∫ ( x + π ) sin nx d x= π π π∫π −



1519

1

π

( x sin nx + π sin nx) d x π∫π −

© 2014, John Bird

π

π cos nπ  1  − x cos nx  − cos nx  =  by parts − ∫ d x −  π n n  n   −π π

1  − x cos nx sin nx π cos nπ  =  + −  π n n2 n −π =

1  −π cos nπ sin nπ π cos nπ + − π  n n2 n =

Hence, b 1 =

1  −2π cos nπ π  n

 2  − cos nπ  − ( 0 ) = n  

2 2 2 2 2 , b 2 = − , b 3 = , b 4 = – , b 5 = , and so on 1 4 5 2 3

Thus f(x) = x + π = π + 0 + x + π = π + 2(sin x –

i.e.

  π cos(−nπ ) sin(−nπ ) π cos(−nπ )   + − −  n n2 n   

2 2 2 2 2 2 sin x – sin 2x + sin 3x – sin 4x + sin 5x – sin 6x + … 2 3 4 5 6 1 1 1 1 1 1 sin 2x + sin 3x – sin 4x + sin 5x – sin 6 x + ... ) 3 5 6 4 2

4. Determine the Fourier series up to and including the third harmonic for the function defined by:  x, when 0 〈 x 〈 π f(x) =   2π − x, when π 〈 x 〈 2π Sketch a graph of the function within and outside of the given range, assuming the period is 2π.

The periodic function is shown in the diagram below

a0 =

1 2π

π

∫π −

{

}

2π   x 2  π  x 2   2 x π + −    ∫0  π 2  π    2  0    1   π 2  4π 2   2 π 2    1 π 2 = (π= )} {    − ( 0 )  +  4π 2 −  −  2π − =   2π   2  2   2    2π 2  

f ( x= )d x

1 2π

π

xd x + ∫



(2π − x)= dx

1520

1 2π

© 2014, John Bird

an =

1

π∫

2π 0

f ( x) cos nx d x =

π {∫ 1

π 0

x cos nx d x + ∫



π

}

(2π − x) cos nx d x

π



=

1   x sin nx cos nx   2π sin nx x sin nx cos nx  + + − −  π   n n 2  0  n n n 2  π

=

1   cos nπ   0 + π   n2

=

1 2 cos nπ − 1 − cos 2π n = + cos nπ } { ( cos nπ − 1) π n2 π n2

When n is even,

cos 0    cos 2π n   cos nπ    −  0 + 2   +  0 − 0 −  −0−0− 2 n    n n2    

2 4 ( −1 − 1) =− 2 π (1) π

a1 =

When n = 3,

a3 =

When n = 5,

a5 =

1

π∫

2π 0

2 4 ( −1 − 1) =− 2 π (3) π (3) 2 2 4 ( −1 − 1) =− 2 π (5) π (5) 2

f ( x) sin = nx d x

π {∫ 1

0 −π

and so on

}

π

x sin nx d x + ∫ (2π − x) sin nx d x 0

π

=

     

an = 0

When n = 1,

= bn

  by integration by parts 



1  x cos nx sin nx   2π cos nx x cos nx sin nx  − + + − + −   2 π n n 0  n n n 2  π

by integration by parts

  2π cos 2nπ 2π cos 2nπ   + + 0   −  n n   1   π cos nπ     =   − + 0  − ( 0 + 0 ) + π   n   2π cos nπ π cos nπ    −− + − 0     n n     

=

1 0 {−π cos nπ + 2π cos nπ − π cos nπ } = nπ ∞

Substituting into f(x) = a0 + ∑ ( an cos nx + bn sin nx ) n =1

gives:

f(x) =

i.e.

f(x) =

π 2

π 2





4

π

cos x −

4 4 cos 3 x − cos 5 x − ... + 0 π (3) 2 π (5) 2

4 cos 3 x cos 5 x  + + ...   cos x + 2 2 π 3 5 

1521

© 2014, John Bird

5. Expand the function f(θ) = θ 2 in a Fourier series in the range –π < θ < π Sketch the function within and outside of the given range.

The periodic function is shown in the diagram below

1 = a0 2π

π

∫π −

1 f ( x) = dx 2π

{

π

π {∫

1 π 1 = ∫ f (θ ) cos nθ d θ

an

π

}

1 θ ∫ −π θ d= 2π 2

−π

π −π

  θ 3  π  1 2π 3 π 2 3 {π 3 − −π= } =   =  6π 3   3  −π  6π

θ 2 cos nθ d θ

}

π

1  θ 2 sin nθ 2θ cos nθ 2sin nθ  =  + − π n n2 n3  −π =

1   2π cos nπ 2π cos(−nπ ) 4      4π cos nπ − 0 − 0 − −= = 0   cos nπ   0 + π   π n2 n2 n2 n2     since cos nπ = cos(–nπ)

4 4 4 4 a1 = ( −1) = − = , a2 = (1) 2 , 2 2 2 (2) 2 (1) 1

Hence,

π {∫

1 π 1 = ∫ f (θ ) sin nθ d θ

bn

by integration by parts

π

−π

π −π

θ 2 sin nθ d θ

4 4 a3 = ( −1) = − , 2 (3) 32

a4 =

4 , and so on 42

}

π

1  θ 2 cos nθ 2θ sin nθ 2 cos nθ  = − + + π n n2 n3  −π =

1   π 2 cos nπ 2 cos nπ +0+   − π   n n3

by integration by parts

2 cos(−nπ )      π 2 cos(−nπ ) +0+ −−   = 0 n n3    



Substituting into f(θ) = a0 + ∑ ( an cos nθ + bn sin nθ ) n =1

gives:

f(θ) =

i.e.

f(θ) =

π2 3



4 4 4 4 cos θ + cos 2θ − cos 3θ + cos 4θ − ... + 0 12 22 32 42

π2

1 1   − 4  cos θ − cos 2θ + cos 3θ − ...  2 2 3 2 3   1522

© 2014, John Bird

6. For the Fourier series obtained in Problem 5, let x = π and deduce the series for



1

∑n n =1

2

When θ = π in Problem 5 above, f(θ) = π 2 Thus,

π2 =

i.e.

π2 = π2 −

i.e.

1 1 1   − 4  cos π − cos 2π + cos 3π − cos 4π + ...  3 22 32 42  

π2 3

+

4 4 4 4 + + + + ... 12 22 32 42

π2

1 1 1 1  = 4  + + + + ...  2 2 2 2 3 1 2 3 4 

2π 2 1 1 1 1  = 4  + + + + ...  3  12 22 32 42 

i.e. and i.e.

π2

2π 2 1 1 1 1 = + + + + ... 3(4) 12 22 32 42

π2 1 1 1 1 + + + + ... = 12 22 32 42 6 ∞

1

∑n

i.e.

n =1

2

=

π2 6

7. Sketch the waveform defined by: 2x   1 + π , when − π 〈 x 〈 0 f(x) =   1 − 2 x , when 0 〈 x 〈 π  π Determine the Fourier series in this range.

The periodic function is shown in the diagram below

1523

© 2014, John Bird

1 = a0 2π

π

∫π −

0 π π  1   1  0  2x  2x x2  x 2    f ( x) = dx x  1 +  d x + ∫ 0 (1 − ) d=  x +  +  x −   2π  ∫ −π  π  π π  −π  π  0   2π  

=

= an

 1 1  π 2    π2   π )} 0 )  {(π − π ) + (π −=  ( 0 ) −  −π +   +  π −  − ( 0= 2π   π    π     2π

π

1

f ( x) cos nx d= x π∫π −

π  1  0  2x  2x  ∫ −π 1 +  cos nx d x + ∫ 0 (1 − ) cos nx d x  π  π  π 

π

0

 sin nx 2  x sin nx cos nx   1  sin nx 2  x sin nx cos nx   by integration by =  +  + −  +  +   2 n   −π  n n 2   0 π n π n π n parts =

1   2  1   2  cos(−nπ )     2  cos nπ   0 + 0 +  2   −  0 + 0 +     +  0 − 0 −  2 π   π  n   π n π  n2    

=

1 4 2} {2 − 2 cos(−nπ ) − 2 cos nπ += (1 − cos nπ ) 2 2 π n π n2 2

1

4 8 4 8 1 − −1) = = , a3 (= (1 − −1) 2 2 , 2 2 2 2 π (1) π π (3) π (3) 2

a5 =

8 π (5) 2 2

and so on

π  1  0  2x  2x   ∫ −π 1 +  sin nx d x + ∫ 0 1 −  sin nx d x  π  π  π   

π

f ( x) sin nx d= x π∫π

b= n

since cos nπ = cos(–nπ)

an = 0

When n is even,

a1 Hence,=

2  1       − 0 − 0 −    π  n 2      



0 π  cos nx 2  x cos nx sin nx    1   cos nx 2  x cos nx sin nx   = − + − + + − − − +    by n n n 2   −π  n n n 2   0  π   π π

integration by parts   cos nπ 2π cos nπ   + 0   − n +  n 1   1    cos(− nπ ) 2π cos(− nπ )      =   − − 0 + 0  −  − + + 0  + n n π   n      1  −  − + 0 − 0      n    

=

1  1 cos(−nπ ) 2π cos(−nπ ) cos nπ 2π cos nπ 1  0 − − + + = − + n n n n n π n ∞



Substituting into f(x) = a0 + ∑ ( an cos nx + bn sin nx ) = ∑ an cos nx = n 1= n 1

gives:

f(x) =

i.e.

f(x) =

8

π

2

cos x +

8 8 8 cos 3 x + cos 5 x + cos 7 x + ... 2 2 2 2 π (3) π (5) π (7) 2 2

8  1 1 1   cos x + 2 cos 3 x + 2 cos 5 x + 2 cos 7 x + ...  2 3 5 7 π  

1524

© 2014, John Bird

8. For the Fourier series of Problem 8, deduce a series for

π2 8

When f(x) = 1 in the series of Problem 8 above, x = 0 hence, i.e.

1=

π2 8

8  1 1 1   cos 0 + 2 cos 0 + 2 cos 0 + 2 cos 0 + ...  2 3 5 7 π  

1 =+

1 1 1 1 + + + + ... 32 52 7 2 92

1525

© 2014, John Bird