Enhancing Forest Inventories Using Lidar and GIS

Report 4 Downloads 106 Views
Enhancing Forest Inventories Using Lidar and GIS Dr. Kevin Lim and Mr. Chad St.Amand P.O. Box 30030 Greenbank North PO Ottawa, ON | K2H 1A3 | Canada

Presentation Outline



Background



High Level Workflow



Value Added Information Products and Tools



Cost Benefit Analysis

Background

Workflow

Basic Products

High Level Workflow

Acquire LiDAR Data

Acquire Field Data

Process LiDAR Data Perform Statistical Analysis

Apply Models to Landscape

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Inventory Variables Variable

Abbrev.

Definition

Top Height (m)

TOPHT

Calculated as the average of the largest 100 stems per hectare.

Average Height (m)

AVGHT

Calculated as the average height of all trees

Density (stems/ha)

Density

Number of trees per hectare

Quadratic Mean Diameter (cm)

QMDBH

Basal Area (m2/ha)

BA

DBH2 * 0.00007854

Gross Total Volume (m3/ha)

GTV

Honer et al. (1983) equations

Gross Merchantable Volume (m3/ha)

GMV

Honer et al. (1983) equations

Total Above Ground Biomass (Kg/ha) Diameter Distributions

SUMBIO

Ter-Mikaelian and Korzukhin (1997) equations

DD

Volume, BA, Density by Size Class

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Normalization of Points to Terrain

zveg

∆ zgrd

TILE TIN

∆ = Znorm = Zveg - Zgrd

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Lidar Predictors •

Statistical -



Percentiles of height -



Mean Standard deviation Deciles (p10 … p90) Maximum height

Canopy density -

d1 … d9 Da: Number of first returns divided by all returns. Db: Number of first and only returns divided by all returns.

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Lidar Predictor Surfaces

Each surface corresponds to a lidar predictor. Cell resolution of 20m (or 400m2 in area).

Apply a mask (optional).

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Statistical Modelling



Performed outside of ArcGIS -

SAS R Any other statistical package

Models

Transporting Models 300

250

a) PJ Acutal GMV (m3/ha)

Acutal GMV (m3/ha)

250 200 150 100 50

b) SB

200 150 RMForig

RMForig

RMFmf 100 MF

RMFmf MF 1:1

1:1 50

0

0 0

100

200

300

400

0

50

Predicted GMV (m3/ha) 30

25

c) PJ Acutal GMV (m3/ha)

Acutal Dbhq (m3/ha)

20 15 10 5 0 5

10

15

Predicted Dbhq (m3/ha)

150

200

250

d) SB

25

0

100

Predicted GMV (m3/ha)

20

25

20 RMForig 15

RMForig

RMFmf

RMFmf

10 MF

MF

1:1 5

1:1

0 0

5

10

15

Predicted Dbhq (m3/ha)

20

25

0.35

æ 1 æ Dbh - m ö 2 ö æ æ Dbh - a ö c ö 1 expç - ç expç - ç ÷ ÷ ÷ ÷+ ç è b ø ÷ s 2p ç 2è s ø ÷ø è ø è

Relative GMV

c -1

Sw

0.2

Pj

0.15

Plot

0.1

Mixture

0.05

Weibull

0 10

12

14

16

18

20

22

Diameter class (cm) 0.18

Plot 49

0.16 0.14 Relative GMV

c æ Dbh - a ö f (x) == ç ÷ aè b ø

0.25

0.12

Sb

0.1

Sw

0.08

Pj

0.06

Plot

0.04

Mixture

0.02

Weibull

0 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Diameter class (cm) 0.2

Plot 44

0.18 0.16 Relative GMV

Diameter Distribution Modeling

Plot 20

0.3

Pj

0.14 0.12

Sw

0.1

Bf

0.08

Bw

0.06

Plot

0.04

Mixture

0.02

Weibull

0 10

12

14

16

18

20

22

24

26

Diameter class (cm)

28

30

32

34

36

Workflow Acquire LIDAR Data

Define Stratification

LIDAR Data

Classify Point Cloud Acquire Field Data For Sample Plots Intersect With Sample Plots

Vegetation Points

Ground Points

Create TIN

Field Data Normalize Points To Terrain

Vegetation Points Per Plot Calculate Forest Variables

Forest Variable Statistics

Perform Statistical Analyses

Regression Models

TIN

Calculate LIDAR Predictors

Normalized Vegetation Points Per Plot

Normalized Vegetation Points

LIDAR Predictors

LIDAR Predictor Surfaces

Calculate LIDAR Predictors

Apply Models to Landscape

Forest Inventory Surfaces

Apply Models to Landscape

Value Added Information Products and Tools

Cost Benefit Analysis

A. Inventory Data Acquisition and Treatment Costs Cost comparison items

Cost paid by TRAD

Inventory data acquisition and processing costs

Costs REAL

LIDAR

$/ha

$/ha

$/ha

Lidar data acquisition

Tembec

-

-

1.00

Lidar processing

Tembec

-

-

0.45

Lidar validation plots

Tembec

-

-

0.15

Photo acquisition

OMNR

0.46

0.46

0.46

Photo processing and interpretation

OMNR

0.44

0.44

0.44

Traditional inventory plots

OMNR

0.40

0.40

0.40

$1.30

$1.30

$2.90

Sub-total § §

m2

RMF LIDAR acquisition cost about $0.40/ha for 0.5 pulses/ Cost depends of the size of the acquisition, better price for larger area

B. Forest Operations Cost Analysis • Forest management plan (FMP) revisions • Better wood allocation at the planning stage • Budget forecast • Decrease of Forest and Mill Inventory • Better freshness on the wood products • Feller-buncher productivity (m3/ha) • Full-tree productivity (m3/stem) • Skidding productivity • Wood cutting optimization • Wood damage on immature wood • Wood delivery logistics • Floating costs • Block layout • Handling productivity • Better road location & design • Road construction • Road maintenance • Silviculture funds • Silviculture cost • Indirect costs

Total

N/A $0.13 m3 $0.02 m3 $0.07 m3 m³ $0.09 m3 $0.08 m3 $0.19 m3 $ ??? $ ??? $ ??? $ ??? $0.05 m3 $0.05 m3 $0.02 m3 $0.01 m3 $0.43 m3 $0.03 m3 $0.06 m3 $0.02 m3 $0.15 m3

$1.40 m3

C. Mill Cost Analysis Savings • Sawmill scheduling • Wood purchase • Wood net value - sawmill productivity • Lumber Value

N/A $0.11 m3 $0.12 m3 $0.07 m3

Total $0.30 m3

Scenario Results – REAL vs. LiDAR Cost Analysis 1 Inventory acquisition & processing 2. Forest operations 3. Mill

Total Savings with LiDAR

$1.60 /m3 X 500,000 m3 / year = $ 800,000 / year

Model Cost of LiDAR acquisition and Processing = $1,006,400 Payback = 1.3 years

Kevin Lim | [email protected]

Chad St.Amand | [email protected]