Enrollment Goals: Last Year

Report 8 Downloads 66 Views
1.

Understanding the primary drivers that  impact enrollment & revenue outcomes

2.

Analyzing current trends

3.

Understanding new tactics deployed  which may influence past trend lines  y p and future projections.

4 4.

Using this information to influence future strategy & resource decisions.

Enrollment

Budget  F Factors

Enrollment forecasting requires balancing multiple  factors to achieve institutional  goals.

Prospect & applicant pool – P & li l knowing who is  k i h i most likely to make commitment to come &  to stay Effective communication plan throughout  recruitment & admission phase Affordability – sticker price vs. out of pocket  costs Connections to your institution

New student key performance indicators 

# applications  #  li ti  



% completed applications



Admit rate 



Yield rate

By Segment  critical to achieve institutional goals By Segment – 

Student type – high school, transfer



Academic ability ‐‐ merit / non‐merit



Need category – high, medium, low, no need



Mix – gender, diversity, special target groups



Program

Enrolled headcount by total; by student type; class level

By program or unique tuition rates Residential vs. commuters Headcount

Term to term retention rates  (by class level; program)

Persistence rate for fall entering cohort  nd ( t (return for 2  f  

f ll t fall term) )

Retention rate to junior year  (return for 3rd fall term)

Graduation rate by cohort Ability to pay (financial aid)

Registration Activity

AACRAO 2010 Forecasting Enrollment

Historical Trends to Project  Future Graduation Rates

Data not based on FT‐FT FR (IPEDS definition), but on all FR enrolled in the cohort. Freshman Cohort ‐ 1st Year Graduation Rate Chart How to use information for forecasting future continuing student enrollment,  retention rates, graduation rates. Fall FR Cohort Fall HDCT

2004 635

2005 710

2006 622

2007 716

2008 712

# Lost

537 85% ‐98

615 87% ‐95

535 86% ‐87

585 82% ‐131

618 87% ‐94

Additional #  Lost

452 71% ‐85

544 77% ‐71

458 74% ‐77

524 73% ‐61

548 77% ‐70

419 66% ‐33

513 72% ‐31

424 68% ‐34

494 69% ‐30

337 86 25

414 95 20

335

Graduation Rate‐4‐YR Graduation Rate‐5‐YR Graduation Rae‐6‐YR

53% 67% 71%

58% 72% 75%

54%

6 YR Goal

71%

75%

70%

Fall YR 2 Persistence

Fall YR 3 Retention

Fall Year 4 Retention Additional #  Lost

Graduation Information 4‐YR Graduation 5‐YR Graduation 6‐YR Graduation

Projection

Projection

2009 682 586 Projection 86% ‐96



Shared goals



Establish timeline with stakeholders;  on‐going  Establish timeline with stakeholders;  on going  communication



Determine critical benchmarks & track progress  towards  goals at specific points in time



Know where opportunities exist to adjust  pp j strategy



Build trend lines for key performance indicators



Refine models overtime (change)

 By program  New student applications  enrolled headcount goal  Awarding scholarships  Connecting financial aid &  headcount goals

Challenges: 

Price 





Net Revenue





New Student Headcount





Average credits per student g p



Prior quarter continuing student  flow pattern



Program capacity – total students  and new students d   t d t ◦ facilities ◦ faculty resources ◦ services

 



g q Programs are unique  Competition Market sensitivity tied to adult  learners Resources Longer timeline in admission  funnel  Front end data is essential

Program projection model

AACRAO 2010 Forecasting Enrollment

Program Projection Model Enrollment Projection by Program

rate increase 1.05 2010-11

A 2009-10 Program Capacity

Actual Summer

Program Name

B

C D E

Credits $PerCr Revenue Total Headcount New Students Continuing Students Avg. Cr per HC Prior Q. Cont. Std. Flow

74 30

199 $459 $91,341 40 0 40 4.98 0.57971

Actual Actual Fall Winter Total Proj. Revenue

Projected Spring $898,263

Total Proj. Credits

1957

600 $459 $275,400 66 32 34 9.09 0.85000

611 $459 $280,449 68 1 67 8.99 1.01515

547 $459 $251,073 64 0 64 7.62 0.96297

Projected Summer

217 $482 $104,583 42 0 42 5.18 0.65139

Projected Projected Fall Winter Total Proj. Revenue

Projected Spring $931,609

Total Proj. Credits

1933

609 $482 $293,508 69 30 39 8.83 0.93039

612 $482 $294,953 68 0 68 9.01 0.99194

495 $482 $238,565 65 0 65 7.62 0.9630

D: Average Credits per Headcount -- based on 3-YR average E. Continuing Student Flow Pattern -- based on 3-YR average

A. B. C. D. E.

Enrollment Drivers: Program Capacity -- maximum number of total students; maximum number of new students Price -- per credit tuition rate New students -- some programs admit students once per year (cohort); others admit new students each term Average Credits per Headcount -- of all students enrolled, what is the average credits per students per quarter Prior Quarter Continuing Student Flow Pattern (ex: spring term: What % of the total winter students enroll in spring)

New student application - model

AACRAO 2010 Forecasting Enrollment

New Student Projection Model Applications through Yield

What if I want to enroll

750

Freshmen -- how many applications are required? Projection

New Students Applications % Change

2005

2006

2007

2008

2009

2010

           2,000            2,230            2,210            2,500            2,600 6.2%

11.5%

‐0.9%

13.1%

4.0%

Model

Multi‐YR  Avg

2,850

A

9.6%

5.41%

Completed Apps            1,900            2,100            2,120            2,350            2,420            2,679 % Completed

Admits

95.0%

94.2%

95.9%

94.0%

93.1%

94.0%

           1,576            1,597            1,753            1,808            1,830

2,036

% Admit Rate

82.9%

76.0%

82.7%

76.9%

75.6%

76.0%

Registered

715

685

716

725

732

750

% Yield

45.4%

42.9%

40.8%

40.1%

40.0%

36.8%

94.0%

94.4%

B

76.0%

78.8%

C

If the projected yield rate is too high or low --- adjust one of the following: A

Total Number of Applications

B

% Completed

C

% Admitted

What influences the variations in the Yield Rates? What do historical trends suggest? Options: Chart for New Transfer Students Chart for Early Action Students

41.8%

Start with what happened last year.  Check what is happening with 2010 incoming class.   Determine if shift in the line might improve yield rates or increase other enrollment goals – gender, diversity, etc.  ◦ Set goals ◦ Check benchmarks at specific points in time Under Missing 900 Missing Below 3.00

1000900-990 1040

10501090

11001140

11501190

12001240

12501290

13001340

13501390

14001440

14501490

15001600 Missing Below 3.00

7

3.00-3.09 3.10-3.19 3.20-3.29

3.00-3.09 3.10-3.19 3.20-3.29

6 5

3.30-3.39

3.30-3.39

3.40-3.49

HS

3.40-3.49 GPA

4

3.50-3.59

3.50-3.59

3

3.60-3.69 3.70-3.79 3.80-3.89 3.90-3.99 4.00

2 1 Under Missing 900

1000900-990 1040

10501090

11001140

11501190

12001240

SAT Score

12501290

13001340

13501390

14001440

14501490

15001600

3.60-3.69 3.70-3.79 3.80-3.89 3.90-3.99 4.00

AACRAO 2010

Academic Ability -- By High School GPA and SAT Score Question: How to determine where to apply merit aid scholarships? What history is needed?

Yield -- All FR by Cell. Compare Cells with larger number of Admits yet with lower Yield Rate and seek an explanation to inform future strategy decisions.

Missing

Under 900

no admits no admits

Missing Below 3.00 3.00-3.09 3.10-3.19 3.20-3.29 3.30-3.39 3.40-3.49

1000900-990 1040

10501090

100% no admits no admits 57%

11001140

11501190

12001240

0% no admits 75%

0%

no admits

75%

57%

50%

67%

no admits

100%

83%

36%

20%

25%

56%

40%

no admits no admits

57%

43%

50%

38%

10%

38%

12501290

13001340

13501390

14001440

14501490

15001600

0% no admits no admits no admits no admits no admits

50% no admits 50%

100%

0%

0% no admits no admits

0% no admits no admits no admits

100% no admits

0%

100% no admits no admits no admits

no admits no admits

44%

42%

27%

38%

44%

0%

0%

0%

no admits

100%

57%

29%

38%

63%

33%

64%

63%

0%

no admits no admits

71%

36%

57%

50%

27%

44%

50%

20%

50% no admits

no admits no admits

50%

44%

36%

50%

31%

40%

30%

38%

60%

3.50-3.59 3.60-3.69 3.70-3.79

no admits no admits

44%

17%

45%

35%

38%

19%

33%

40%

33%

38%

0% no admits

no admits no admits

29%

8%

39%

38%

41%

36%

45%

23%

67%

33%

50% no admits

no admits no admits

33%

14%

50%

26%

29%

27%

54%

29%

43%

0%

3.60-3.69 3.70-3.79 3.80-3.89

3.80-3.89

no admits no admits

78%

29%

37%

35%

48%

32%

36%

32%

65%

0%

20%

0%

3.90-3.99

3.90-3.99

no admits no admits

30%

0%

46%

36%

27%

36%

29%

43%

52%

57%

17%

43%

4.00

4.00 Missing

Under 900

1000900-990 1040

10501090

11001140

11501190

12001240

SAT Score

12501290

13001340

67% no admits no admits no admits

Missing Below 3.00 3.00-3.09 3.10-3.19 3.20-3.29 3.30-3.39 HS 3.40-3.49 GPA 3.50-3.59

0%

13501390

100% no admits no admits 0% no admits

100% no admits no admits

100% no admits

14001440

14501490

15001600

Why segment?

Model Segmentation – by:

Different rate for moving  through the process h h  h  

1. Student type

Different completion rates

3. Gender

2. Merit vs. non‐merit

4. Ethnic students vs. all Different yield rates Identify more clearly where  to influence students

5. Intended major

Project Model-Segmentation

AACRAO 2010 Forecasting Enrollment

A

Segmenting Data Early Action + Regular ADM = All Freshmen

B

U

V

W

X

Y

1

New Student Projection ‐ Segments

3 4

All Freshmen

5

Academic Ability ‐‐‐‐ by Grid 1

6 7

Z

AA

AB

AF

AG

AH

AI

AJ

Total

2

3

4

5

6

7

3,500 

% Change

Three Years Past

20

400

460

645

615

600

185

2,925

9

Two Years Past

10

Last Year

50 35 40

450 460 499

505 495 559

635 630 758

635 620 734

580 600 691

195 180 219

3,050 3,020 3,500

1.1% 14.3% 16.0% 21.7% 21.0% 19.7%

6.3%

100.0%

0.7% 1.6% 1.2% 1.2%

6.3% 6.4% 6.0% 6.2%

Projection %

12 13 14 15 16 18 19

AE

enrollment mix (gender, ethnicity), other target  groups ‐‐ visit program, communication strategy, etc.

Applications

A

AD

      Similar models could be created for transfer students,

8

11 A.

AC

Application Goal: 125

  

Distribute by percentage of Merit category

‐30 480

calculation‐ row 11 Adds cells ‐‐ e.g in Column 1    =C11 + L 11

History ‐ % of Total Three Years Past Two Years Past Last Year 3‐YR Avg

13.7% 14.8% 15.2% 14.6%

15.7% 16.6% 16.4% 16.2%

22.1% 20.8% 20.9% 21.2%

21.0% 20.8% 20.5% 20.8%

20.5% 19.0% 19.9% 19.8%

20 45 30 38 95%

380 410 450 486 97%

435 490 470 537 96%

600 580 615 732 97%

575 600 610 703 96%

550 540 585 656 95%

155 2,715 165    2,830 145    2,905 149    3,301 68% 94.3%

100% 90% 86% 92%

95% 91% 98% 95%

95% 97% 95% 96%

93% 91% 98% 94%

93% 94% 98% 95%

92% 93% 98% 94%

84% 85% 81% 83%

92.8% 92.8% 96.2% 93.9%

Two Years Past Last Year

20 45 30

380 410 450

435 490 470

550 540 570

450 435 445

200 195 210

6 5 7

2,041 2,120 2,182

Projection

38

486

537

609

430

178

5

2,283

100% 100% 100%

83%

61%

27%

3%

69.2%

100% 100% 100% 100%

92% 93% 93% 92%

78% 73% 73% 75%

36% 36% 36% 36%

4% 3% 5% 4%

75.2% 74.9% 75.1% 75.1%

20 21 22 23 24

Completed Applications Three Years Past Two Years Past Last Year

25 26 27 28 B. 29 30 31 32

Projection %

B

Compl Rate 93% 93% 96% 94%

Completed Application Goal:   

Review percentage completed by Merit category

History ‐ % Completed  Three Years Past Two Years Past

33 34 36

Last Year

3‐YR Avg

37 38 39 40 41 42 43 44

Admits Three Years Past

45 46 C. 47 48 49 50 51 52 53 55 56

C

ADM Rate Projection

ADM Rate 75%

Admits and Admit Rate  

75% 75%

Review admit rate by Merit category Identify where may choose to increase / decreaes admits

69%

History ‐ Admit Rate Three Years Past Two Years Past Last Year 3‐YR Avg

100% 100% 100% 100%

100% 100% 100% 100%

57 58 59 60

Goal ‐ Hold HDCT to 880

61 62

Headcount ‐ Enrolled 165 185 190

205 235 225

130 125 145

90 110 105

1 0 1

783 850 876

38.4%

Last Year

180 175 190

HDCT ‐ Projection

20

220

202

241

129

89

0

901

39.5%

Yield Rate ‐ Proj

53% 60.0% 44.4% 66.7% 57.0%

45% 47.4% 42.7% 42.2% 44.1%

38% 37.9% 37.8% 40.4% 38.7%

40% 37.3% 43.5% 39.5% 40.1%

30% 28.9% 28.7% 32.6% 30.1%

50% 45.0% 56.4% 50.0% 50.5%

0% 16.7% 0% 14% 10.3%

39.5% 38.4% 40.1% 40.1% 39.5%

Three Years Past

64

Two Years Past

65 66 D. 67 68 69 70 72

D

Yield Rate

12 20 20

63

Three Years Past Two Years Past Last Year 3‐YR Avg

Headcount Goal and Yield Rate   

Review yield rate by Merit category

40.1% 40.1%

What if model shows too many or not enough enrol

Financial aid strategy to achieve net revenue goals  headcount p p  need levels of student population  financial aid strategy (merit & need based)

Financial aid used to influence new student  entering class as well as support student  outcomes   increase persistence & graduation rates  improve student satisfaction

Need analysis‐model

AACRAO 2010 Forecasting Enrollment

A

Need Analysis - Projection Model B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

1 2 3 4 5 6 7

Need Distribution Projection   What percentage of new and continuing students are projected to fall within need categories?      

     Consider past trends.  Consider impact as new students move into continuing student categories.

8

Enrolled Student ‐ % of Fall Headcount

9 10 11

Segment by Student Type

12 13

High Need

29%

35%

41%

34.5%

230

295

357

304

14 15

Medium Need

17%

15%

15%

16.4%

133

125

135

144

16 17

Low Need

19%

17%

14%

14.6%

145

145

125

128

18 19

No Need

35%

34%

30%

34.9%

275

285

259

307

20 21 22 23

Total

100%

100%

100%

100%

783

850

876

880

Prev YR

Prev YR

Last YR

Fall Headcount Projection

Prev YR

Prev YR

Last YR

Projection

Steps:

24

Review history and determine 'break points' for each category by "student segement" -- eg. continuing, new

2 25

Review admit, registered and yield rates

26

Establish baseline goal and use this information to create a model that tracks goals by Need and Merit category

27

Monitor this information throughout spring/summer to determine in baseline projection is on target

Proj = $Total HDCT$ x % by Need Category 304 =round($K$20*F12,0)

AACRAO 2010 Forecasting Enrollment

Model Connecting Headcount and Need Projections

Projection Model ‐New Freshmen ‐ Enrollment and Financial Aid Model:  Merit and Need  This report provides an overview by Merit Scholarship and Need Categories.   Final Data ‐ History

Goal

Academic Ability ‐ GRID.  Linked to New Student Model

3 Years  Two Years  Ago Ago Last YR Projection Enrollment Goals:         2,041        2,120        2,182                    2,283 Admits Enrolled  783 850 876                        901 Yield  38.4% 40.1% 40.1% 39.5%

This section  summarizes the Need Groups below the bar

 Proj F10 2283 852 37.3% Prev Avg Yield Rate

F09  

1

3

4

5

6

7

           38          486          537          609          430          178               5            20          220          202          241          129            89           ‐ 52.6% 45.3% 37.6% 39.6% 30.0% 50.0% 0.0% Summary Chart Below based on Assumptions by Need Distribution

1 38 20 52.6% 57.0%

1

F10

2

2 486 177 36.4% 44.1%

2

3 537 188 35.0% 38.7%

3

4 609 245 40.2% 40.1%

4

5 430 141 32.8% 30.1%

5

6 178 79 44.4% 50.5%

6

7 5 2 40.0% 10.3%

7

F07

F08

570 230 40.4% 27.9% 29.4%

615 295 48.0% 29.0% 34.7%

745 357 47.9% 34.1% 40.8%

614 294 47.9% 26.9% 34.5%

10 8 100.0% 26.3%

135 61 44.9% 27.8%

147 67 45.5% 27.4%

153 75 48.9% 25.1%

115 53 45.9% 26.7%

54 30 55.0% 30.3%

0.0%

360 133 36.9% 17.6% 17.0%

350 125 35.7% 16.5% 14.7%

342 135 39.5% 15.7% 15.4%

375 140 37.3% 16.4% 16.4%

5 1 100.0% 13.2%

88 33 38.0% 18.1%

92 29 32.0% 17.1%

80 36 45.0% 13.1%

75 26 34.5% 17.4%

33 14 42.0% 18.5%

2 1 33.0% 40.0%

351 145 41.3% 17.2% 18.5%

370 145 39.2% 17.5% 17.1%

365 125 34.2% 16.7% 14.3%

358 123 34.4% 15.7% 14.4%

8 4 100.0% 21.1%

85 25 29.5% 17.5%

85 30 35.7% 15.8%

95 38 40.5% 15.6%

65 18 28.0% 15.1%

20 8 40.4% 11.2%

0 0

310 130 41.9% 18.5% 16.6%

360 150 41.7% 17.4% 17.6%

335 140 41.8% 13.1% 16.0%

359 132 36.8% 15.7% 15.5%

10 5 85.0% 26.3%

90 32 35.0% 18.5%

80 29 36.8% 14.9%

80 32 40.3% 13.1%

75 23 30.2% 17.4%

24 11 45.0% 13.5%

0.0%

5 2 66.7% 13.2%

88 26 29.0% 18.1%

133 33 25.0% 24.8%

201 64 31.9% 33.0%

100 21 21.4% 23.3%

47 16 33.6% 26.4%

3 1 33.0% 60.0%

1.  High Need Admits Registered Yield  % of Total FR Admits  % of Registered

History ‐ Yield rate  by category

2. Medium Need Admits Registered Yield  % of Total FR Admits  % of Registered

3.  Low Need Admits Registered g Yield  % of Total FR Admits  % of Registered

0.0%

4. No Need Filer  Admits Registered Yield  % of Total FR Admits  % of Registered

0 0

5. No Need Non Filer Admits Registered Yield  % of Total FR Admits  % of Registered

450 145 32.2% 20.9% 18.5%

425 135 31.8% 21.8% 15.9%

395 119 30.1% 19.2% 13.6%

577 163 28.2% 25.3% 19.1%

% of "full pays"

53.6%

50.6%

43.8%

49.1%

2Project Model-Segment SPU 2010 Model 2-42%fullpay

Net revenue  drivers Headcount by         student type # Instit. Scholarships       $ Instit. Scholarships  I i  S h l hi # Institutional Gift Aid    % Institutional Gift Aid      $ Institutional Gift aid Average  $ Scholarship     Average $ Gift aid f d Total Net Revenue Discount Rate

| Enrollment Goals:  Continuing Student Goal Discount Rate Discount Rate Headcount # Scholarship $ Scholarship # Gift Aid # Gift Aid % Gift Aid $ Gift aid Average SPU Scholarship A Average SPU Gift aid SPU Gift id Total Net Revenue Discount Rate

Last Year             1,589 38 2 38.2              1,520              1,200 $6,543,278 1368 90% $15,432,180 $5,453 $11 281 $11,281

| | | | | | | | | | | | $26,724,475 | 36.2% |

This Year           1,615 38 80 38.80           1,503           1,035 $7,012,035 1237 82% $11,502,930 $6,775 $9 299 $9,299 $23,461,715 35.8%

Summary data.   Next level of analysis aggregates data by need levels – high,  medium, low, no need filer, no need non‐filer , , f , f

Determine critical information needed and begin   data collection Excel, access, frozen data tables/information system, data  warehouse

Verify data quality Enrollment

Budget  Factors

accurate, complete, shared definition & metrics

Identify key benchmarks points in time when data must be gathered and compared to build  historical trends

Data segmentation start with macro then identify sub‐sets 

pp g Holistic approach to data management requires buy‐in from “data managers” (create / manage data)

Build baseline year assess effectiveness and refine over time



Forecasting Enrollment to Achieve Institutional Goals, 2007 article in College & University (Volume  82, No. 3).



Data‐Driven Decisions:  Using Data to Inform and Influence Decision‐makers, 2006 article in  College & University (Volume 81, No. 3).



Enrollment Management:  Key Elements for Building and Implementing an Enrollment Plan, 2005  article in College & University (Volume 80, No. 4).



Understanding the Business of Higher Education: Building Context for Your Staff Development  Plan;  2008 article in College & University (Volume 84, No. 1). ; g y( 4, )



Let's Get Organized: Your Personal GPS to Improving Organizational Skills; March 2010 article in  SEM Source, found online at http://www.aacrao.org/sem/ .



When Enrollment Strategies Cross Traditional Boundaries: Opportunities and Challenges, April  2008 article in SEM Source,  http://www.aacrao.org/sem/ ‐‐ (listed under archives).

Recommend Documents