Graduate Computer and Informa^on Sciences PhD Abstract ID: 492 ...

Report 1 Downloads 60 Views
Graduate   Computer  and  Informa0on  Sciences   PhD   Abstract  ID:  492

 

A  System  For  Gathering  Data  on  Sleep  Behavior  and  Context  in  the  Home  SeBng   Aida  Ehyaei¹,  Stephen  In0lle²  

¹Department  of  Electrical  and  Computer  Engineering,  Northeastern  University   ²College  of  Computer  and  Informa0on  Science  and  Bouvé  College  of  Health  Sciences,  Northeastern  University   A  collabora0on  with  Case  Western  Reserve  University   Problem   We  spend  almost  one-­‐third  of  our  lives  sleeping.  Quality  and  quan0ty   of   sleep   affect   health   and   how   people   feel   and   behave   during   the   day,  but  rela0vely  liNle  is  known  about  how  home  behavior  impacts   sleep   quality.   Therefore,   beNer   tools   are   needed   to   study   sleep   behaviors  unobtrusively,  outside  of  the  laboratory.       Background     •  Polysomnography,  the  gold  standard  laboratory  sleep  monitoring   method  is  expensive  and  burdensome  for  the  person  wearing  the   system;   typically   the   electrodes   required   must   be   aNached   by   an   expert.     •  Ac6graphy,   where   accelerometers   measure   a   person’s   wrist   movement,   is   an   inexpensive   method   of   measuring   sleep   but   does   not  provide  informa0on  about  a  person’s  sleep  environment  that   may  impact  sleep  quality,  such  as  noise.   Approach   We  developed  a  system  for  sleep  monitoring  in  home  seRngs  using   context-­‐sensi0ve   self-­‐report.   The   system   includes   a   mo0on   sensor,   an  applica0on  on  an  Android  based  smartphone,  and  a  remote  data   collec0on   and   visualiza0on   system.   Ac0graphy   and   audio   amplitude   analysis   is   used   to   trigger   self-­‐report   and   gather   data   on   not   only   sleep   quality,   but   also   sleep   environment   and   possible   sleep   disruptors.       Data  Gathering   •  Mo6on   data   are   gathered   using   a   wrist   worn   accelerometer   sensor,   Wocket,   and   sent   wirelessly,   in   real-­‐0me,   to   the   assigned   smart  phone,  leT  on  the  bedside  table.     •  Ambient   noise   levels   are   also   monitored   using   the   phone’s   microphone.  

 

Phone  Applica6on     •  Real-­‐6me  processing  of  incoming  mo0on  and  audio  data,  inferring   sleep/wake   states   and   also   marking   poten0ally   disrup0ve   audio   events  throughout  the  night.     •  Execu0ng   a   context-­‐aware   and   0me-­‐dependent   adap6ve   survey   (Fig.   2)   with   tailored   ques0ons   about   the   events   of   the   night   to   elicit   more   precise   answers   from   the   user   about   poten0al   sleep   disturbances.     •  Sending  data  to  a  remote  study  data  monitoring  and  visualiza0on   tool.     Online  data  visualizer   The   mobile   system   simplifies   research   study   administra0on   by   sending  data  to  a  research  webserver  regularly  for  incremental  data   cleaning  and  compliance  checking.  (Fig.  3)  

Fig.  3:  Server-­‐side  soTware  allows  the  research  team  to  monitor  the   deployed   systems   hourly,   iden0fying   problems   quickly   and   inspec0ng  the  mo0on  and  audio  data  for  each  par0cipant.    

Sleep-­‐wake  scoring  algorithms   To   validate   sleep   detec0on   algorithm   from   Wocket   data   we   compared  the    output  from  our  system  to  sleep  states  determined  by   polysomnography   on   10   par0cipants.   We   implemented   three   algorithms  used  for  detec0ng  sleep  vs.  wake  states  from  accelera0on   data  in  the  sleep  literature.       Table1:   The   accuracy   of   sleep/wake   detec0on   algorithms   for   Wocket  mo0on  data  using  three  different  algorithms  on  ten  people   for  one  day  of  data.       Sensi6vity Specificity

Accuracy

(sen  +  spe)

0.71

Sadeh  Algorithm  [1] 0.87 0.83

1.58

0.82

Kripke  Algorithm  [2] 0.82 0.82

1.64

0.76

Sazonov  Algorithm  [3] 0.85 0.82

1.60

Conclusion   Using  mo0on  sensors  and  smart  phones  allows  the  measurement  of   sleep   in   home   seRngs   for   several   nights.   The   system   is   currently   being  pilot  tested  in  the  homes  of  children  in  Cleveland,  OH  and  will   be  used  to  assess  sleep  disturbances  and  peer  and  family  effects  on   urban  African-­‐American  children’s  sleep.     Acknowledgements   This   is   joint   work   with   James   Spilsbury   at   Case   Western   Reserve   University   and   funded   by   NIH/NIMHD   grant   #R21   MD007632.   Funding   for   some   of   the   tools   that   were   used   or   extended   for   this   work  was  made  possible  by  NIH/NHLBI  grant  #U01HL091737.   Fig.  2:  Survey  ques0ons  are  prompted  on  the  phone   before   study   par0cipants   go   to   bed   and   aTer   the   system   detects   they   have   woken   up;   this   context-­‐ sensi0ve   self   report   is   and   used   to   gather   informa0on  on  events  in  the  home  that  may  impact   sleep  onset  and  quality.    

References   Fig.   1:   A   Wocket,   the   custom   wearable   sensors   used   in   this   work;     and   the   components   in   a   Wocket  “kit” given  to  study  par0cipants  include  2   Wockets,  a  charger,  and  a  comfortable  band.  

[1]Sadeh,  A.  et  al.  1995.  Ac0vity-­‐based  assessment  of  sleep-­‐wake  paNerns   during  the  1st  year  of  life.  Infant  Behavior  and  Development.  18,  3  (1995),   329–337.   [2]Kripke,   D.F.   et   al.   2010.   Wrist   ac0graphic   scoring   for   sleep   laboratory   pa0ents:   algorithm   development:   Wrist   ac0graphic   algorithm   development.  Journal  of  Sleep  Research.  19,  4  (Dec.  2010),  612–619.   [3]Sazonov,   E.   et   al.   2004.   Ac0vity-­‐based   sleep–wake   iden0fica0on   in   infants.  Physiological  Measurement.  25,  5  (Oct.  2004),  1291–1304.