Lecture Summary Note This document was written in the following way (which might explain its structure): First, I copied Prof. Imamogluโs non-example notes for the review. Then I merged the in-class examples from the review and our assistantโs (Tim) review. The language is inconsistent.
Table of Contents 1
Integration .......................................................................................................................................................... 3 1.1
Facts ............................................................................................................................................................ 3
1.2
Properties .................................................................................................................................................... 3
1.3
Mittelwertsatz der Integralrechnung ............................................................................................................ 3
1.4
Fundamental theorem of Calculus ............................................................................................................... 3
1.5
How do we calculate integrals? .................................................................................................................... 3
1.6
Improper Integrals ....................................................................................................................................... 4
1.7
Examples ..................................................................................................................................................... 4
1.7.1
Examples BP 2013 ................................................................................................................................ 4
1.7.2
Example Spring 2010 ............................................................................................................................ 4
1.8 2
Differential Equations .......................................................................................................................................... 5 2.1
3
4
Additional Wisdom ...................................................................................................................................... 5
Linear differential equations with constant coefficients ................................................................................ 5
2.1.1
Finding the homogeneous solution ๐ฆ๐ป of ๐ฟ๐ฆ = 0 ................................................................................ 5
2.1.2
How to find the special solution of ๐ฟ๐ฆ = ๐๐ฅ using the method of โAnsatzโ .......................................... 5
2.2
Boundary or initial value problems .............................................................................................................. 6
2.3
Solving DGL by separation of variables ......................................................................................................... 6
2.4
Ansรคtze........................................................................................................................................................ 6
2.5
Examples ..................................................................................................................................................... 6
2.5.1
Example Spring 2011 ............................................................................................................................ 6
2.5.2
Example Summer 2013 ........................................................................................................................ 7
2.5.3
Example Spring 2011 ............................................................................................................................ 7
Differentiation in โ๐ ........................................................................................................................................... 7 3.1
Differentiation rules ..................................................................................................................................... 8
3.2
Directional derivative ................................................................................................................................... 8
3.3
Higher partial derivatives ............................................................................................................................. 8
3.4
The extrema of a function ๐: ฮฉ. โ โ ............................................................................................................ 8
3.5
Line integral ................................................................................................................................................. 9
3.6
div, rot, โฆ .................................................................................................................................................... 9
3.7
Tangentialebene ausrechnen ..................................................................................................................... 10
3.8
Potential ausrechnen ................................................................................................................................. 10
3.9
Additional Wisdom .................................................................................................................................... 10
Integration in โ๐ ............................................................................................................................................... 10
7/30/2014
Linus Metzler
1|11
4.1
Substitution in โ๐ ..................................................................................................................................... 10
4.2
Greenโs theorem........................................................................................................................................ 11
4.3
Additional Wisdom .................................................................................................................................... 11
7/30/2014
Linus Metzler
2|11
1 Integration Let ๐: โ โ โ be a continuous function, ๐ = {๐ = ๐ฅ๐ < ๐ฅ1๐ฅ < โฏ < ๐ฅ๐ = ๐} a partition of the interval [๐, ๐] and ๐๐ โ [๐ฅ๐ , ๐ฅ๐+1 ] points in each subinterval. Then the sum ๐(๐, ๐, ๐ ) = โ๐โ1 ๐=0 ๐ (๐๐ )(๐ฅ๐+1 โ ๐ฅ๐ ) is called the Riemann sum attached
to
๐
and
๐.
to
For
๐ผ๐ = [๐ฅ๐ , ๐ฅ๐+1 ],
๐(๐, ๐ ) = โ๐โ1 ๐=0 (inf ๐) (๐ฅ๐+1 โ ๐ฅ๐ ) ๐ผ๐
and
๐(๐, ๐ ) =
๐
โ๐โ1 ๐=0 (sup ๐) (๐ฅ๐+1 โ ๐ฅ๐ ) are called the lower and upper Riemann sums. Similarly โซ๐ ๐ ๐๐ฅ = sup{๐(๐, ๐ ), ๐ โ ๐(๐ผ)} ๐ผ๐ ๐ and โซ๐ ๐ ๐๐ฅ ๐ โซ๐ ๐ ๐๐ฅ.
๐
= inf{๐(๐, ๐ ), ๐ โ ๐ (๐ผ)} are called lower and upper integrals. ๐ is called Riemann integrable if โซ๐ ๐ ๐๐ฅ =
1.1 Facts -
Each continuous function is Riemann integrable Each monotonic function is Riemann integrable
1.2 Properties -
Let ๐, ๐ Riemann integrable on ๐ผ, ๐ผ, ๐ฝ โ โ. Then ๐
๐
๐
1. โซ๐ (๐ผ๐ + ๐ฝ๐)๐๐ฅ = ๐ผ โซ๐ ๐ ๐๐ฅ + ๐ฝ โซ๐ ๐ ๐๐ฅ ๐
๐
2. If ๐(๐ฅ) โค ๐(๐ฅ) โ๐ฅ โ [๐, ๐] then โซ๐ ๐ ๐๐ฅ โค โซ๐ ๐ ๐๐ฅ ๐
๐
3. |โซ๐ ๐ ๐๐ฅ| โค โซ๐ |๐(๐ฅ)|๐๐ฅ ๐
4. (inf ๐) (๐ โ ๐) โค โซ๐ ๐ (๐ฅ) ๐๐ฅ โค (sup ๐) (๐ โ ๐) 5. 6.
I ๐ โซ๐ ๐ ๐ โซ๐ ๐
๐ผ
๐
๐๐ฅ = โ โซ๐ ๐ (๐ฅ) ๐๐ฅ ๐
๐
๐๐ฅ = โซ๐ ๐ (๐ฅ) ๐๐ฅ + โซ๐ ๐ (๐ฅ) ๐๐ฅ โ๐, ๐, ๐ โ โ
7. ๐ (๐ฅ) โฅ 0 โ๐ฅ โ ๐ท โน โซ๐ท ๐ ๐๐ โฅ 0
1.3 Mittelwertsatz der Integralrechnung ๐
๐: [๐, ๐] โ โ continonous. Then โ๐ โ [๐, ๐] such that โซ๐ ๐ (๐ฅ) ๐๐ฅ = ๐(๐ )(๐ โ ๐ ).
1.4 Fundamental theorem of Calculus ๐ฅ
1. Let ๐: [๐, ๐] โ โ continuous. Define ๐น (๐ฅ) โ โซ๐ ๐ (๐ก) ๐๐ก โ๐ฅ โ [๐, ๐]. Then ๐น is differentiable and ๐น โฒ = ๐. ๐น is called a primitive (Stammfunktion) of ๐ 2. If ๐บ is an anohte rpmimirve of ๐ then ๐บ = ๐น + ๐ for some constant ๐ ๐ 3. Let ๐น be any pmirmitve of ๐, then โซ๐ ๐ (๐ฅ) ๐๐ฅ = ๐น (๐) โ ๐น (๐)
1.5 How do we calculate integrals? Never forget the constant! 1. Partial integration: follows product rule for differentiation โซ ๐(๐ฅ)๐โฒ (๐ฅ) ๐๐ฅ = ๐ (๐ฅ)๐(๐ฅ) โ โซ ๐ โฒ (๐ฅ)๐(๐ฅ) ๐๐ฅ ๐
๐
โซ๐ ๐ (๐ฅ)๐โฒ (๐ฅ) ๐๐ฅ = ๐ (๐ฅ)๐(๐ฅ)|๐๐ โ โซ๐ ๐ โฒ (๐ฅ)๐(๐ฅ) ๐๐ฅ 2. Substitution: follows chain rule for differentiation โซ ๐(๐ฅ) ๐๐ฅ = โซ ๐(๐(๐ฆ))๐โฒ (๐ฆ) ๐๐ฆ ๐(๐)
๐
โซ๐(๐) ๐ (๐ฅ) ๐๐ฅ = โซ๐ ๐(๐(๐ฆ))๐โฒ (๐ฆ) ๐๐ฆ 3.
Partial fractions: to integration rational functions of the form ๐(๐ฅ) ๐(๐ฅ)
, ๐, ๐ are polynomials
๐(๐ฅ)
๐(๐ฅ)
= (๐ฅ 2+1)(๐ฅโ1)2(๐ฅ+2) ๐(๐ฅ)
โ Ansatz: ๐(๐ฅ) = ๏ญ
๐(๐ฅ)
๐ด๐ฅ+๐ต ๐ฅ 2+1
๐ถ
๐ท
๐ธ
+ ๐ฅโ1 + (๐ฅโ1)2 + ๐ฅ+2
๐๐๐๐๐ก๐ญ๐ Vielfachheiten, โ โ Nullstellen Basic types of integration of rational functions โบ
7/30/2014
Polynomial: โซ โ ๐๐ ๐ฅ ๐ ๐๐ฅ = โ ๐๐
๐ฅ ๐+1 ๐+1
+๐
Linus Metzler
3|11
โบ
๐๐ฅ
Inverse powers: โซ (๐ฅโ๐ฅ
0
={ )๐
log|๐ฅ โ ๐ฅ0 | , fรผr = 1 1
1
1โ๐ (๐ฅโ๐ฅ0)๐โ1
, fรผr โฅ 2
1.6 Improper Integrals The improper integral of an integrable function ๐ on (๐, ๐) which is integrable on any subinterval [๐โฒ , ๐โฒ ]. We define ๐โฒ
๐
the improper integral โซ๐ ๐ (๐ฅ) ๐๐ฅ โ lim lim โซ๐โฒ ๐ (๐ฅ) ๐๐ฅ . โฒ โฒ ๐ โ๐ ๐ โ๐
โIntegralkriteriumโ -
๐ (๐ฅ) is defined on [๐, โ[ ๐ (๐ฅ) โฅ 0 โ๐ฅ โ [๐, โ[ ๐ (๐ฅ) monoton fallend โ ๐ โฒ (๐ฅ) โค 0 โ โน โโ ๐=๐ ๐ (๐) konvergiert โ โซ๐ ๐ (๐ฅ) ๐๐ฅ konvergiert
Facts ๐ 1โ๐
= { ๐ โ1 , ๐ > 1 โ, ๐ โค 1 โ 2. If ๐ is on [๐, โ) continuous and โ๐ and ๐ > 1 so that |๐(๐ฅ)| โค ๐/๐ฅ ๐ โ๐ฅ โฅ ๐, then โซ๐ ๐(๐ฅ) ๐๐ฅ converges 1. โ๐ โ โ, ๐ > 0,
โ ๐๐ฅ โซ๐ ๐ฅ ๐
โ
3. If ๐ is in [๐, โ) continuous and โ๐ > 0 such that ๐(๐ฅ) โฅ ๐/๐ฅ, โ๐ฅ โฅ ๐, then โซ๐ ๐(๐ฅ) ๐๐ฅ diverges to โ.
1.7 Examples 1.7.1 -
Examples BP 2013 2 โ1+ln ๐ฅ
โซ1
๐ฅ
๐๐ฅ ๐ข = 1 + ln ๐ฅ ๐๐ฅ ๐๐ข = ๐ฅ 2 1+ln 2 ๐ข3/2 โ1 + ln ๐ฅ โซ ๐๐ฅ = โซ ๐ข1/2 ๐๐ข = ๐๐๐๐ 1 ๐ก๐1 + ln 2 ๐ฅ 3/2 1 1
-
โซ cos ๐ฅ cosh ๐ฅ ๐๐ฅ ๐ข = cos ๐ฅ ๐ขโฒ = โ sin ๐ฅ ๐ข
๐ฃ โฒ = cosh ๐ฅ ๐ฃ = sinh ๐ฅ ๐ฃโฒ
โ ๐ฅ ๐๐ฅ = ๐ข๐ฃ โ โซ ๐ฃ๐ขโฒ (cos ๐ฅ ) cosh ๐ผ=โซ โ ๐ข
๐ฃโฒ
โ ๐ฅ ๐๐ฅ (๐ ๐๐ ๐ฅ) ๐ ๐๐โ = (cos ๐ฅ )(cosh ๐ฅ ) + โซ โ = cos ๐ฅ cosh ๐ฅ + [sin ๐ฅ cosh ๐ฅ โ โซ cos ๐ฅ cosh ๐ฅ ๐๐ฅ]
-
1 ๐ผ = [cos ๐ฅ sinh ๐ฅ + sin ๐ฅ cosh ๐ฅ] + ๐ถ 2
๐ฅ 2โ๐ฅ+2
โซ ๐ฅ 3โ๐ฅ 2+๐ฅโ1 ๐ฅ 3 โ ๐ฅ 2 + ๐ฅ โ 1 = ๐ฅ 2 (๐ฅ โ 1) + (๐ฅ โ 1) = (๐ฅ โ 1)(๐ฅ 2 + 1) ๐ฅ2 โ ๐ฅ + 2 ๐ด ๐ต๐ฅ + ๐ถ โซ 3 = + 2 2 ๐ฅ โ๐ฅ +๐ฅโ1 ๐ฅโ1 ๐ฅ +1 โ ๐ด(๐ฅ 2 + 1) + (๐ต๐ฅ + ๐ถ )(๐ฅ โ 1) = ๐ฅ 2 โ ๐ฅ + 2 ๐ฅ2 โ ๐ฅ + 2 1 1 โ ๐ด = 1, ๐ถ = โ1, ๐ต = 0; โซ 3 =โซ โ 2 ๐๐ฅ 2 ๐ฅ โ๐ฅ +๐ฅโ1 ๐ฅโ1 ๐ฅ +1 = ln ๐ฅ โ 1 โ tanโ1 ๐ฅ + ๐ถ
1.7.2
Example Spring 2010 โ
Untersuche, ob das untere Integral โซ โ
1
๐ฅ2
1 ๐๐ฅ konvergiert. +๐ฅ
โ 1 1 โ๐ฅ 2 + ๐ฅ โฅ ๐ฅ 2 โ โซ 2 โค โซ 2 ๐๐ฅ โ converges 1 ๐ฅ +๐ฅ 1 ๐ฅ
7/30/2014
Linus Metzler
4|11
or ๐
๐ 1 1 1 ๐๐ฅ = lim โซ โ ๐๐ฅ = lim[ln|๐ฅ| โ ln|๐ฅ + 1|]๐ ๐โโ 1 ๐ฅ(๐ฅ + 1) ๐ฅ+1 1 ๐ฅ ๐ฅ ๐ ๐ 1 | = lim ln = lim ln | โ ln = ln 2 ๐โโ ๐ฅ + 1 1 ๐โโ ๐ + 1 2
lim โซ
1.8 Additional iisdom ๏ญ
From http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign: โบ โบ
๏ญ ๏ญ
๏ญ
๐
๐ ๐๐
๐
๐
(โซ๐ ๐(๐ฅ) ๐๐ฅ ) = ๐(๐), (โซ๐ ๐ (๐ฅ) ๐๐ฅ ) = โ๐ (๐) ๐๐ ๐
๐๐
๐ ๐
๐(๐ผ ) โ โซ๐ ๐(๐ฅ, ๐ผ ) ๐๐ฅ , ๐๐ผ = โซ๐ ๐ ๐
๐๐ผ
๐๐
๐๐
๐(๐ฅ, ๐ผ ) ๐๐ฅ + ๐ (๐, ๐ผ ) ๐๐ผ โ ๐ (๐, ๐ผ ) ๐๐ผ (Leibniz)
๐! โ โ(2๐๐) ( ๐ ) (Stirling) Solids of revolution ๐
โบ
when integrating parallel to the axis of revolution: ๐ = ๐ โซ๐ ๐ 2 (๐ฅ) ๐๐ฅ
โบ
when integrating perpendicular to the axis of revolution: ๐ = 2๐ โซ๐ ๐ฅ |๐(๐ฅ)| ๐๐ฅ
๐
Donโt forget +๐ถ when integrating
2 Differential Equations 2.1 Linear differential equations with constant coefficients ๐๐
๐๐โ1
๐
To solve a linear differential equations of the form ๐ฟ๐ฆ โฒ = ๐(๐ฅ) where ๐ฟ โ ๐๐ฅ ๐ + ๐๐โ1 ๐๐ฅ ๐โ1 + โฏ + ๐1 ๐๐ฅ + ๐0, ๐(๐ฅ) a function, ๐๐ โ โ. 1. Find a homogenous solution๐ฆ๐ป . Namely a solution of ๐ฟ๐ฆ = 0. 2. Find a special solution ๐ฆ๐ of ๐ฟ๐ฆ = ๐(๐ฅ) using the method of โAnsatz vom Typ der rechten Seiteโ. 3. The general solution is given by ๐ฆ = ๐ฆ๐ป + ๐ฆ๐
2.1.1
Finding the homogeneous solution ๐ฆ๐ป of ๐ฟ๐ฆ = 0
1. Find the characteristic polynomial of ๐ฟ. Namely ๐๐ฟ (๐) = ๐๐ + ๐๐โ1 ๐๐โ1 + โฏ + ๐1 ๐ + ๐0 2. Fact: if ๐1 , โฆ ๐๐ โ โ are the pairwise distinct roots of ๐(๐) = 0 with associated multiplicities ๐1 , โฆ , ๐๐
, then the functions ๐ฅ โ ๐ฅ ๐ ๐ ๐๐ ๐ฅ , 1 โค ๐ โค ๐, 0 โค ๐ โค ๐๐ form a system of fundamental solutions of the homogenous equation ๐ฟ๐ฆ = 0. Note: if ๐ฟ has real coffeicients, every pair of cimplex conjugate, non-ral roots ๐๐ = ๐๐ ยฑ ๐๐๐ of multiplicity ๐๐ give a fundamental solution ๐ฅ ๐ ๐ (๐๐ ยฑ๐๐๐)๐ฅ = ๐ฅ ๐ ๐ ๐๐ (cos ๐๐ ๐ฅ ยฑ ๐ sin ๐๐ ๐ฅ) for 0 โค ๐ < ๐๐ . So one can as a basis take ๐ฅ ๐ ๐ ๐๐ ๐ฅ cos ๐๐ ๐ฅ and ๐ฅ ๐ ๐ ๐๐ ๐ฅ sin ๐๐ ๐ฅ instead of ๐ฅ ๐ ๐ (๐๐ +๐๐๐)๐ฅ and ๐ฅ ๐ ๐ (๐๐ โ๐๐๐ )๐ฅ . Then the general homoge๐
๐ nous solutions is of the form ๐ฆ๐ป (๐ฅ) = โ๐๐=1 โ๐=0 ๐๐๐ ๐ฅ ๐ ๐ ๐๐ ๐ฅ with constants ๐๐๐ .
2.1.2
How to find the special solution of ๐ฟ๐ฆ = ๐(๐ฅ ) using the method of โAnsatzโ
Facts 1. Let ๐ โ โ. If ๐ is not a solution of ๐๐ฟ (๐) =? ?, then the inhomongoues DGL ๐ฟ๐ฆ = ๐ ๐๐ฅ has particular solution ๐ฆ=๐
1
๐ฟ (๐)
๐ ๐๐ฅ
2. Let ๐ โ โ, ๐ its multiplicity as a solution of ๐๐ฟ(๐) = 0 (๐ can be zero which means ๐ is not a solution of ๐๐ฟ (๐) = 0). Let ๐(๐ฅ) a polynomial of degree ๐. Then a particular solution of ๐ฟ๐ฆ(๐ฅ) = ๐(๐ฅ)๐ ๐๐ฅ is of the form ๐ฆ(๐ฅ) = ๐
(๐ฅ)๐ ๐๐ฅ for a polynomial ๐
(๐ฅ) of degree ๐ + ๐ 3. If ๐ฟ has real coefficients. Let ๐, ๐ โ โ, ๐ the multiplicity of ๐ ยฑ ๐๐ as a solution of ๐๐ฟ (๐) = 0 (๐ = 0 means ๐ ยฑ ๐๐ is a root of ๐๐ฟ ). Let ๐(๐ฅ), ๐
(๐ฅ) be a polynomial of degreeโค ๐. The particular solution of the inhomogeneous DGL ๐ฟ๐ฆ = ๐(๐ฅ)๐ ๐๐ฅ cos ๐๐ฅ + ๐
(๐ฅ)๐ ๐๐ฅ sin ๐ฅ is of the form ๐ฆ(๐ฅ) = ๐ (๐ฅ)๐ ๐๐ฅ cos ๐๐ฅ + ๐(๐ฅ)๐ ๐๐ฅ sin ๐ฅ for polynomials ๐, ๐ of degree โค ๐ + ๐
7/30/2014
Linus Metzler
5|11
2.2 Boundary or initial value problems ๐ฆ(๐1 ) = ๐ด1 ๐ฆ(0) = ๐ด1 ๐ฆ(๐2 ) = ๐ด2 ๐ฆ โฒ (0) = ๐ด2 When we are given a DGL ๐ฟ๐ฆ = ๐(๐ฅ) together with either boundary values or initial values , โฆ โฆ ๐ฆ(๐๐ ) = ๐ด๐ ๐ฆ ๐โ1 (0) = ๐ด๐ we first find the general solution ๐ฆ = ๐ฆ๐ป + ๐ฆ๐ . Then we determine the constants ๐1 , โฆ , ๐๐ in the homogenous solution using the given boundary/initial values.
2.3 Solving DGL by separation of variables Facts -
If ๐: ฮฉ โ โ is differentiable in ๐ฅ0 โ โ, then the partial derivatives exists and the differential ๐๐(๐ฅ0 ) has the matrix representation (
-
๐๐ ๐๐ฅ โฒ
(๐ฅ0 )
โฆ
๐๐ ๐๐ฅ ๐
(๐ฅ0 )) = โ๐ the gradient of ๐.
๐ diff in ๐ฅ0 โน ๐ is continous in ๐ฅ0 If all partial derivatives of ๐ exists and continuous, then ๐ is differentiable.
Using the last two facts and the definition of differentiability, one can study if a given is differentiable of not. Recipe ๐๐(๐ฅ)
= ๐(๐ฅ)โ(๐(๐ฅ))
-
Sei die DG in der Form
-
Sei nun ๐ฆ = ๐ (๐ฅ), dann ๐๐ฅ = ๐(๐ฅ)โ(๐ฅ)
-
Falls โ(๐ฆ) โ 0, dann
-
Alternative Notation:
-
werden nun beide Seiten nach x integriert, dann โซ โ(๐ฆ) ๐๐ฅ ๐๐ฅ = โซ ๐(๐ฅ) ๐๐ฅ โบ โซ โ(๐ฆ) ๐๐ฆ = โซ ๐(๐ฅ) ๐๐ฅ
-
โซ
๐๐ฅ ๐๐ฆ
๐๐ฆ
= ๐(๐ฅ)๐๐ฅ
โ(๐ฆ) 1 ๐๐ฆ โ(๐ฆ) ๐๐ฅ
= ๐(๐ฅ) 1 ๐๐ฆ
๐ฆโฒ ๐ฆ
1
๐๐ฆ = ln|๐ฆ|
2.4 Ansรคtze ๐, ๐, ๐, ๐ โ โ, ๐, ๐ โ โ, ๐ โ โ, ๐๐ = Polynomial of degree ๐ฅ Ansatz fรผr ๐ฆ๐ (๐ฅ)
Stรถrfunktion ๐(๐ฅ) ๐๐ ๐๐ฅ
๐๐ ๐๐ฅ
๐ sin ๐๐ฅ ๐ cos ๐๐ฅ
๐ sin ๐๐ฅ + ๐ cos ๐๐ฅ
๐๐ ๐๐ฅ sin ๐๐ฅ ๐๐ ๐๐ฅ cos ๐๐ฅ
๐ ๐๐ฅ (๐ sin ๐๐ฅ + ๐ cos ๐๐ฅ )
๐๐ (๐ฅ)๐ ๐๐ฅ ๐๐ (๐ฅ)๐ ๐๐ฅ sin ๐๐ฅ ๐๐ (๐ฅ)๐ ๐๐ฅ cos ๐๐ฅ
๐
๐ (๐ฅ)๐ ๐๐ฅ ๐ ๐๐ฅ (๐
๐ (๐ฅ) sin ๐๐ฅ + ๐๐ (๐ฅ) cos ๐๐ฅ )
Bem 1 Liegt eine Linearkombination der Stรถrfunktionen vor, so hat man auch als Ansatz eine entsprechende Linearkombination zu wรคhlen. Bem 2 Falls ๐ฬ = ๐ + ๐๐ eine ๐โfache Nullstelle des charakteristischen Polynoms von (๐ป) ist, so muss man den Ansatz fรผr ๐ฆ๐ (๐ฅ) mit dem Faktor ๐ฅ ๐ multiplizieren.
2.5 Examples 2.5.1
Example Spring 2011
a) Bestimme alle Lรถsungen ๐ฆ = ๐ฆ(๐ฅ) der DGL ๐ฆ (4) โ ๐ฆ = 0 welche fรผr |๐ฅ| โ โ beschrรคnkt bleiben. ๐ถโ๐๐๐๐๐ก๐๐๐๐ ๐ก๐๐ ๐๐๐๐ฆ๐๐๐๐๐๐: ๐ฅ 4 โ 1 = 0 โ (๐ฅ 2 โ 1)(๐ฅ 2 + 1) = 0 ๐ = ยฑ1 โ ๐ ๐ฅ , ๐ โ๐ฅ โ ๐ = ยฑ๐ โ cos ๐ฅ , sin ๐ฅ ๐ฆ๐ป (๐ฅ) = ๐1 ๐ ๐ฅ + ๐2โ๐ฅ + ๐3 cos ๐ฅ + ๐4 sin ๐ฅ The solutions that remain bounded as |๐ฅ| โ โ are of the form ๐3 cos ๐ฅ + ๐4 sin ๐ฅ b) Bestimme eine Lรถsung ๐ฆ = ๐ฆ(๐ฅ) der DGL ๐ฆ (4) โ ๐ฆ = ๐ โ๐ฅ + ๐ฅ 7/30/2014 Linus Metzler 6|11
๐ฆ 4 โ ๐ฆ = ๐ โ๐ฅ โ ๐ฆ๐1 ๐ฆ 4 โ ๐ฆ = ๐ฅ โ ๐ฆ๐2 Superposition: ๐ฆ๐ = ๐ฆ๐1 + ๐ฆ๐2 (๐ฅ) ๐ฆ = ๐1 ๐ ๐ฅ + ๐2 ๐ โ๐ฅ + โฏ + ๐ฬ
๐ฆ๐1 = ๐ถ๐ฅ๐ โ๐ฅ and ๐ฆ๐2 = ๐ท๐ฅ + ๐ธ Try ๐ฆ๐ = ๐ถ๐ฅ๐ โ๐ฅ + ๐ท๐ฅ + ๐ธ, put this in ๐ฆ4 โ ๐ฆ = ๐ ๐ฅ + ๐ฅ (4) ๐ฆ๐ (๐ฅ) = ๐ถ[โ4๐ โ๐ฅ + ๐ฅ๐ โ๐ฅ ] (4) ๐ฆ๐ (๐ฅ) โ ๐ฆ๐ (๐ฅ) = ๐ถ[โ4๐ โ๐ฅ + ๐ฅ๐ โ๐ฅ ] โ [๐ถ๐ฅ๐ โ๐ฅ + ๐ท๐ฅ + ๐ธ] = ๐ โ๐ฅ + ๐ฅ 1 โ ๐ = , ๐ท = โ1 4
2.5.2
Example Summer 2013
a) Fรผr welche Werte des Paramaters ๐ โ โ strebt die allgemeine Lรถsung der DGL ๐ฆ โฒโฒ + 2๐ฆ โฒ + ๐๐ฆ = 0 unabhรคngig von den Anfangsbedingungen gegen 0 fรผr ๐ฅ โ โ? โ2 ยฑ โ4 โ 4๐ ๐2 + 2๐ + ๐ = 0 โ ๐1,2 = = โ1 ยฑ โ1 โ ๐ 2 For 1 โ ๐ < 0: there are 2 complex conjugate roots. Let |1 โ ๐| = ๐2 . ๐โ๐๐ โ 1 ยฑ ๐๐ โ ๐1 ๐ ๐ฅ cos ๐๐ฅ + ๐2 ๐ โ๐ฅ sin ๐๐ฅ โ 0 as ๐ฅ โ โ For 1 โ ๐ = 0: (โ1) is a double root. The solution c1 ๐ โ๐ฅ + ๐2 ๐ โ๐ฅ ๐ฅ โ 0 independeant of the initial conditions. For 1 โ ๐ > 0: then one of the roots will be positive ๐ข๐ โ1 โ ๐ > 1. That will lead to ๐ = โ1 + โ1 โ ๐ > 0 which leads to a growing solution. We do not want 1 โ ๐ > 1 or ๐ < 0. ๐๐ โ1 โ ๐ < 1 then ๐1,2 < 0 b) Finden Sie eine homogene DGL 2. Ordnunug mit konstanten Koeffizienten, deren allgemeine Lรถsung ๐ฆ(๐ฅ) = ๐ โ๐ฅ + 2๐ฅ๐ โ๐ฅ ist. Was sind dann die Anfangsbedingungen bei ๐ฅ = 0? ๐ฆ = ๐ โ๐ฅ + 2๐ฅ๐ โ๐ฅ We are looking for a 2nd DGL. By looking at the equation, you can see that ๐ = โ1 with multiplicity 2 (i. e. double root of the char. pol. ). โ (๐ + 1)2 = ๐2 + 2๐ + 1 โฒโฒ โฒ ๐ฆ + 2๐ฆ + ๐ฆ = 0 + initial values โ ๐1 = 1, ๐2 = 2 ๐ฆโ = ๐1 ๐ โ๐ฅ + ๐2 ๐ฅ๐ โ๐ฅ ๐บ๐ป ๐๐๐๐๐๐๐ โ๐๐๐๐๐๐๐๐ข๐ ๐ ๐๐๐ข๐ก๐๐๐ โ0 โฒ( ) ( )
๐ฆ 0 =๐
2.5.3
= 1 ๐๐๐ ๐ฆ 0 = โ๐ โ๐ฅ + 2[๐ โ๐ฅ โ ๐ฅ๐ โ๐ฅ ] for ๐ฅ = 0 โ = 1
Example Spring 2011 Bestimme die Lรถsung ๐ฆ = ๐ฆ(๐ฅ) der DGL ๐ฆ โฒ = ๐ ๐ฅโ๐ฆ mit ๐ฆ(0) = 0 ๐๐ฅ โ ๐ฆ โฒ = ๐ฆ โ ๐๐ฆ๐ ๐ฆ = ๐ ๐ฅ ๐๐ฅ โ โซ ๐ ๐ฆ ๐๐ฆ = โซ ๐ ๐ฅ ๐๐ฅ โ ๐ ๐ฆ = ๐ ๐ฅ + ๐ ๐ ๐ฆ = ln ๐ ๐ฅ + ๐ 0 = ๐ฆ(0) = ln ๐ 0 + ๐ = ln 1 + ๐ โ ๐ = 0
3 Differentiation in โ๐ A function ๐: ฮฉ โ โ๐ โ โ is differentiable in ๐ฅ0 if there exists a linear map ๐ด: โ๐ โ โ such that ๐(๐ฅ) = ๐(๐ฅ โ ๐ฅ0 ) + ๐
(๐ฅ,๐ฅ0) ๐ฅโ๐ฅ0 |๐ฅโ๐ฅ0|
๐ด(๐ฅ โ ๐ฅ๐ ) + ๐
(๐ฅ, ๐ฅ0 ) where lim
= 0. In this case ๐ด is called the differential of ๐ at ๐ฅ0 and it is dented by
(๐๐)(๐ฅ0 ). Let (๐ด1 , ๐ด2 , โฆ , ๐ด๐ ) be a matrix representation of the linear map ๐ด: โ๐ โ โ. The ๐ differentiable at ๐ฅ0 means ๐(๐ฅ) = ๐ (๐ฅ0 ) + ๐ด1 (๐ฅ1 โ ๐ฅ01 ) + ๐ด2 (๐ฅ 2 โ ๐ฅ02 ) + โฏ + ๐ด๐ (๐ฅ ๐ โ ๐ฅ0๐ ) + ๐
(๐ฅ, ๐ฅ0 ). ๐๐
A partial derivative is defined as ๐๐ (๐โ) โ lim ๐
๐(๐1,..,๐๐โ1,๐๐+โ,๐๐+1 ,โฆ,๐๐)โ๐(๐1,โฆ,๐๐,โฆ,๐๐)
โโ0
โ
Fact Let โ (๐ , ๐ก) be a continuously differentiable function of two variables and ๐(๐ก) a differentiable function of one ๐(๐ก)
variable. Define ๐ข(๐ก) โ โซ๐
7/30/2014
๐(๐ก) ๐โ
โ(๐ , ๐ก) ๐๐ . Then ๐ข is diffenetbale and ๐ขโฒ (๐ก) = โ(๐(๐ก), ๐ก) โ
๐โฒ ๐ก(๐ก) + โซ๐
Linus Metzler
7|11
๐๐ก
(๐ , ๐ก) ๐? ?
๐
In particular if ๐ข(๐ก) is defined as a definite integral of โ (๐ , ๐ก) in the variable ๐ , ๐ข(๐ก) โ โซ๐ โ (๐ , ๐ก) ๐๐ , then ๐ข is differentiable and one can interchange the order of differentiation and integration. That is ๐ ๐
โซ๐
๐๐ก
๐ ๐๐ก
๐
๐
๐ข(๐ก) = ๐๐ก โซ๐ โ(๐ , ๐ก) ๐๐ =
โ(๐ , ๐ก) ๐๐ .
3.1 Differentiation rules Let ๐, ๐: ฮฉ โ โ differentiable in ๐ฅ0 . Then: 1. ๐(๐ ยฑ ๐)(๐ฅ0 ) = ๐๐(๐ฅ0 ) + ๐๐(๐ฅ0 ) 2. ๐(๐๐)(๐ฅ0 ) = ๐(๐ฅ0 )๐๐(๐ฅ0 ) + ๐(๐ฅ0 )๐๐(๐ฅ0 ) 3. If ๐(๐ฅ0 ) โ 0 then ๐(๐/๐)(๐ฅ0 ) =
๐(๐ฅ0)๐๐(๐ฅ0)โ๐(๐ฅ0)๐๐(๐ฅ0) (๐(๐ฅ0))
2
4. Let โ: โ โ โ be differentiable in ๐(๐ฅ0 ). Then ๐(โ โ ๐)(๐ฅ0 ) = โ โฒ (๐(๐ฅ0 )) โ
๐๐(๐ฅ0 ) 5. Let ๐ป: ๐ผ โ โ โ ฮฉ โ โ๐ be differentiable in ๐ฅ0 โ ๐ผ and ๐: ฮฉ โ โ differentiable in ๐ป (๐ก0 ). Then โฒ(
๐ป)(๐ก0 ) = ๐๐(๐ป(๐ก0 )) โ
๐ป ๐ก0 ) where ๐ป(๐ก) = (๐ป1 (๐ก), ๐ป2 (๐ก), โฆ , ๐ป๐ (๐ก)), ๐ปโฒ(๐ก) = 6. Chain ๐๐ ๐๐ฅ
rule:
๐
๐
(๐ฅ(๐ก), ๐ฆ(๐ก)) โ
๐ฅ โฒ (๐ก) +
๐๐ฆ
(๐ โ
(๐ป1โฒ (๐ก), ๐ป2โฒ (๐ก), โฆ , ๐ป๐โฒ (๐ก)) โฒ( )
(๐ โ ๐)(๐ก0 ) = ๐๐(๐(๐ก0 )) โ
๐โฒ (๐ก0 ); (๐(๐ฅ(๐ก), ๐ฆ(๐ก))) = ๐๐(๐ฅ (๐ก), ๐ฆ(๐ก)) โ
( ๐๐ก
๐๐ก ๐๐
๐ ๐๐ก
๐ฅ ๐ก )= ๐ฆ โฒ (๐ก)
(๐ฅ(๐ก), ๐ฆ(๐ก)) โ
๐ฆ โฒ (๐ก)
3.2 Directional derivative The directional derivative of ๐ is in the direction of a unit vector ๐ โ โ๐ โ {0} is given by ๐๐ ๐(๐ฅ0 ) = โ๐ (๐ฅ0 ) โ
๐โ.
3.3 Higher partial derivatives One can similarly define higher order partial derivatives for functions ๐ โ ๐ถ ๐ (ฮฉ). ๐2 ๐
๐2 ๐
Fact (Schwarz) If ๐ โ ๐ถ 2 (ฮฉ) then ๐๐ฅ ๐๐ฅ ๐ = ๐๐ฅ ๐๐ฅ ๐ and in general for ๐ โ ๐ถ^๐(ฮฉ), all partial derivatives of order โค ๐ are independent of the order of differentiation. Using higher order derivatives one can analogous to the 1-dimensional case define a Taylor approximation of ๐. ๐2 ๐
1
Fact Let ๐ โ ๐ถ ๐ (ฮฉ), ๐: ฮฉ โ โ, ฮฉ โ โ, ๐ฅ0 , ๐ฅ1 โ ฮฉ. Then ๐(๐ฅ1 ) = ๐(๐ฅ0 ) + โ๐(๐ฅ0 )(๐ฅ1 โ ๐ฅ0 ) + 2 โ2๐,๐=1 ๐๐ฅ ๐๐ฅ ๐ (๐ฅ0 )(๐ฅ1๐ โ ๐
(๐,๐ฅ1,๐ฅ0) ๐ฅ1 โ๐ฅ0 โ๐ฅ1โ๐ฅ0โ
๐ฅ0๐ )(๐ฅ1๐ โ ๐ฅ0๐ ) + ๐
(๐, ๐ฅ1 , ๐ฅ0 ) where lim
โ 0.
The analog of the second derivative is given by the matrix of partial derivatives of order 2. The matrix is called the Hesse matrix of ๐. ๐2๐ Hess ๐ โ โ2 ๐ โ ( ๐ ๐ ) ๐๐ฅ ๐ฅ ๐,๐=1โฆ๐
3.4 The extrema of a function ๐: ฮฉ. โ โ Definition A point ๐ฅ โ ฮฉ is called a critical point if โ๐(๐ฅ) = 0 Fact If ๐ is differentiable and ๐ฅ0 is a local extrema of ๐, then ๐ฅ0 is a critical point. Fact Let ๐ฅ0 be a critical point of ๐. Then we have 1. ๐ฅ0 is a local minimum if โ2 ๐(๐ฅ0 ) is positive definite (det Hess ๐ > 0 โง tr Hess ๐ > 0) 2. ๐ฅ0 is a local maximum if โ2 ๐(๐ฅ0 ) is negative definite (det Hess ๐ > 0 โง tr Hess ๐ < 0) 3. Otherwise ๐ฅ0 is a saddle point (det Hess ๐ < 0) To find extrema of ๐ on a region ฮฉ. 1. Find critical points โ โ๐ = 0, ๐ฅ0 is a critical point 2. Check the nature of critical points by Hess(๐)(๐ฅ0 ) 3. Check the critical points that arise from here
7/30/2014
Linus Metzler
8|11
๐2๐ (๐ฅ)) ๐ป๐ (๐ฅ) โ ( ๐๐ฅ๐ ๐๐ฅ๐
๐,๐=1,โฆ,๐
๐2๐ (๐ฅ)) Falls 2D: ๐ป๐ (๐ฅ) โ ( ๐๐ฅ๐๐ฆ
๐2๐ ๐2๐ (๐ฅ) (๐ฅ) ๐๐ฅ1 ๐๐ฅ1 ๐๐ฅ1 ๐๐ฅ2 ๐2๐ ๐2๐ ( ) (๐ฅ) ๐ฅ = ๐๐ฅ2 ๐๐ฅ1 ๐๐ฅ2 ๐๐ฅ2 โฎ โฎ ๐2๐ ๐2๐ (๐ฅ) (๐ฅ) ( ๐๐ฅ๐ ๐๐ฅ1 ๐๐ฅ๐ ๐2
๐,๐=1,โฆ,๐
๐2๐ (๐ฅ) ๐๐ฅ1 ๐๐ฅ๐ ๐2๐ (๐ฅ) โฏ ๐๐ฅ2 ๐๐ฅ๐ โฑ โฎ ๐2๐ (๐ฅ) โฏ )๐ร๐ ๐๐ฅ๐ ๐๐ฅ๐ โฏ
๐2๐ ๐ 2๐ (๐ฅ) (๐ฅ) ๐๐ฅ๐๐ฅ ๐๐ฅ๐๐ฆ = ๐2๐ ๐ 2๐ (๐ฅ) (๐ฅ) ๐๐ฆ๐๐ฆ ( ๐๐ฆ๐๐ฅ )2ร2
The Jacobi-Matrix works similar to the Hesse-Matrix, but it only uses the first derivatives. Fact Let ๐: ฮฉ โ โ be continours and differentiable on an open set ฮฉ โ โ๐ . Let ๐ฮฉ be the boundary of ฮฉ. Then every global extrema of ๐ is either a critical point of ๐ in ฮฉ or a global extramal point of ๐|๐๐ฅ .
3.5 Line integral Let ๐ฃ: ฮฉ โ โ๐ be a vector field and ๐พ a curve with parameterization ๐พ: [๐, ๐] โ ฮฉ, ๐ก โ ๐พ (๐ก). Then the line integral of ๐ ๐ฃ along ๐พ is deinfed as โซ ๐ฃ โ
โโโโโ ๐๐ โ โซ โฉ๐ฃ(๐พ(๐ก)), ๐พ โฒ (๐ก)โช ๐๐ก. ๐พ
๐
Facts 1. โซ๐พ๐ฃ ๐๐ is independent of the parameterization of the path 2. โซ๐พ +๐พ ๐ฃ ๐๐ = โซ๐พ ๐ฃ ๐๐ + โซ๐พ ๐ฃ ๐๐ 1 2 1 2 3. โ โซ๐พ๐ฃ ๐๐ = โ โซโ๐พ๐ฃ ๐๐ , where โ ๐พ is the same path as ๐พ in opposite direction 4. If ๐ฃ is the gradient vector field associated to a function ๐ i.e. ๐ฃ = ๐๐, then โซ๐พ ๐ฃ ๐๐ = ๐(๐พ(๐)) โ ๐(๐พ(๐)), ๐พ: [๐, ๐] โ ฮฉ 5. Wir kรถnnen den Begriff des Wegintegrals auf Wege erweitern, die stรผckweise ๐ถ 1 sind. Ein stรผckweise ๐ถ 1 -Weg ist eine stetige Abbildung ๐พ: [๐, ๐] โ โ๐ mit einer endlichen Unterteilung des Intervalls ๐ = ๐0 < ๐1 < โฏ < ๐๐ = ๐ so dass ๐พ|[๐๐,๐๐+1] : [๐๐ , ๐๐+1 ] โ โ๐ , (๐ = 0 โฆ ๐ โ 1) in ๐ถ 1 ist. Dann definiert man: โซ๐พ ๐ โ โ๐โ1 ๐=0 โซ(๐พ|
[๐๐ ,๐๐+1 ] )
๐
Equivalent once can write everything in terms of 1 forms: ๐ = ๐1 ๐๐ฅ1 + ๐2 ๐๐ฅ 2 + โฏ + ๐๐ ๐๐ฅ ๐ then โซ๐พ๐ = ๐
โซ๐ ๐(๐พ(๐ก)) โ
๐พ โฒ (๐ก) ๐๐ก Facts ๐: ฮฉ โ ๐ฟ (โ๐ โ โ) a continuous 1 forms, then the following are equivalent 1. โ๐ โ ๐ถ 1 (ฮฉ) st ๐๐ = ๐ 2. For every two continuous ๐ถ 1 paths ๐พ1 , ๐พ2 with the same beginning and end points: โซ๐พ ๐ = โซ๐พ ๐ 1
2
3. For every closed curve ๐พ, โซ๐พ๐ = 0 Definition A vector field ๐ฃ: ฮฉ โ โ๐ is called conservative if โซ๐พ ๐ฃ ๐๐ = 0 for all closed curves ๐พ. Fact For a simply connected region ฮฉ, we have: ๐ฃ conservative โบ ๐ฃ = โ๐ for some function ๐.
3.6 div, rot, โฆ ๏ญ
div ๐พ โ โ โ
๐พ =
๐๐พ1 ๐๐ฅ
+
๐๐พ2 ๐๐ฆ
+
๐๐พ3 ๐๐ง ๐๐
๏ญ
๐๐
๐๐
grad ๐ โถ= โ๐ = (๐๐ฅ 1 (๐ฅ0 ), โฆ , ๐๐ฅ ๐ (๐ฅ0 )) , in 3D:
๐๐ฅ ๐๐ ๐๐ฆ ๐๐
, Richtungsableitung: โ๐ โ
๐โ
( ๐๐ง )
7/30/2014
Linus Metzler
9|11
๐๐พ3
๏ญ ๏ญ ๏ญ ๏ญ ๏ญ ๏ญ
rot ๐พ โ โ ร ๐พ =
๐๐ฆ ๐๐พ1 ๐๐ง ๐๐พ2
โ โ
๐๐พ2 ๐๐ง ๐๐พ3 ๐๐ฅ ๐๐พ1
โ ๐๐ฆ ( ๐๐ฅ ) div(๐๐พ) = โ๐ โ
๐พ + ๐ โ
div ๐พ div(๐พ ร ๐ฟ) = ๐ฟ โ
rot ๐พ โ ๐พ โ
rot ๐ฟ 0 ( ) ( rot grad ๐ = 0) 0 div(rot ๐พ) = 0 div(๐ โ
rot ๐พ) = grad ๐ โ
rot ๐พ
3.7 Tangentialebene ausrechnen Um die Tangentialebene am Graph ๐ข (๐ก) auszurechnen, gibt es drei Mรถglichkeiten. ๐(๐ฅ, ๐ฆ) = ๐ (๐ฅ0 , ๐ฆ0 ) + ๐๐ ๐๐ฅ
๐๐
(โฆ )(๐ฅ โ ๐ฅ0 ) + (โฆ )(๐ฆ โ ๐ฆ0 ) = d๐(๐ฅ, ๐ฆ) ๐๐ฆ -
1. Mรถglichkeit: ๐ (๐ฅ, ๐ฆ) ausrechnen
-
2. Mรถglichkeit: Tangentialvektoren; Tangentialvektoren sind immer: (
-
3. Mรถglichkeit: Linearkombination
โ๐ (๐ฅ, ๐ฆ) ) โ1
3.8 Potential ausrechnen1 Sei ๐นโ = (6๐ฅ๐ฆ + 4๐ง 2 , 3๐ฅ 2 + 3๐ฆ 2 , 8๐ฅ๐ง) ein Vektorfeld. Bestimme das Potential ๐ =๐ฆ 3 +โ(๐ง)
-
๐๐ ๐๐ฅ ๐๐ ๐๐ฆ ๐๐ ๐๐ง
= 6๐ฅ๐ฆ + 4๐ง 2 โ โซ(6๐ฅ๐ฆ + 4๐ง 2 )๐๐ฅ = 3๐ฅ 2 ๐ฆ + 4๐ฅ๐ง + โ ๐(๐ฆ, ๐ง) = ๐ (๐ฅ, ๐ฆ, ๐ง) ๐๐
๐๐
๐๐
= 3๐ฅ 2 + 3๐ฆ 2 โ ๐๐ฆ = 3๐ฅ 2 + ๐๐ฆ (๐ฆ, ๐ง) โ ๐๐ฆ = 3๐ฆ 2 โ โซ 3๐ฆ 2 ๐๐ฆ = ๐ฆ 3 + โ(๐ง) ๐๐
๐
= 8๐ฅ๐ง โ ๐๐ง = ๐๐ง (3๐ฅ 2 ๐ฆ + 4๐ฅ๐ง + ๐ฆ 3 + โ(๐ง)) = 8๐ฅ๐ง + โ ๐โฒ (๐ง) โ ๐โฒ (๐ง) = 0, โซ 0 ๐๐ง = ๐ ๐๐ ๐๐ง
=
-
โ ๐ (๐ฅ, ๐ฆ, ๐ง) = 3๐ฅ 2 ๐ฆ + 4๐ฅ๐ง + ๐ฆ 3 + ๐
3.9 Additional iisdom ๏ญ ๏ญ
๐ฅ โฒ (๐ก) ๐๐ ๐๐ ) = ๐๐ฅ (๐ฅ(๐ก), ๐ฆ(๐ก)) โ
๐ฅ โฒ (๐ก) + ๐๐ฆ (๐ฅ(๐ก), ๐ฆ(๐ก)) โ
๐ฆ โฒ (๐ก) (chain rule) ๐ฆ โฒ (๐ก) Ein geschlossener Weg in einem konservativen Vektorfeld ist = 0, โซ๐พ ๐ธโโ โ
โโโโโ ๐๐ = 0. ๐
๐(๐ฅ(๐ก), ๐ฆ(๐ก)) = ๐๐(๐ฅ(๐ก), ๐ฆ(๐ก)) โ
( ๐๐ก
4 Integration in โ๐ The Riemann integral in โ๐ is constructed in an analog way to the case ๐ = 1 with Riemann sums over subintervals replaced with sums over โsubrectanglesโ, with ๐๐ฅ replaced with a ๐-ddimensional volume element d๐ฃ๐๐๐ which we denote either by d๐ฃ๐๐๐ or ๐๐(๐ฅโ ). ๐
๐
๐
๐
Fact For a rectangle ๐ = [๐, ๐] ร [๐, ๐] โ โ2 : โซ๐ ๐ ๐๐ = โซ๐ โซ๐ ๐ ๐๐ฆ ๐๐ฅ = โซ๐ โซ๐ ๐ ๐๐ฅ ๐๐ฆ. Fubini โซ๐ฝ ๐น (๐ก)๐๐ก = โซ๐ฝ โซ๐ผ ๐(๐ฅ, ๐ฆ) ๐๐ฅ๐๐ฆ = โซ๐ผ โซ๐ฝ ๐(๐ฅ, ๐ฆ)๐๐ฆ๐๐ฅ = โซ๐ผร๐ฝ ๐(๐ฅ, ๐ฆ) ๐(๐ฅ, ๐ฆ)
4.1 Substitution in โ๐ Let ๐ข, ๐ฃ โ โ๐ open, ฮฆ: ๐ข โ ๐ฃ bijective with det ฮฆ โ 0 โโ ๐ขฬ. Then for ๐ = ๐ฃ โ โ continuous we have โซ๐ฃ ๐ (๐ฅโ )๐๐(๐ฅโ) = โซ๐ข ๐(ฮฆ(๐ฆ))|det(๐ฮฆ(๐ฆ))|๐๐(๐ฆโ) Theorem 9.17 ๐, ๐ โ โ open, ฮฆ: ๐ โ ๐ bijective, continuous, differentiable, det ๐ฮฆ(๐ฆโ) โ 0โ๐ฆโ โ ๐, ๐: ๐ โ โ continuous. โซ๐ ๐(๐ฅโ )๐๐(๐ฅโ ) = โซฮฆ(๐)=๐ ๐(ฮฆ(๐ฆโ)) |det ๐ฮฆ(๐ฆโ)| ๐๐. ๐ฮฆ(๐ฆโ) is the Jacobi matrix.
1
https://www.youtube.com/watch?v=tslJEOnt9aY
7/30/2014
Linus Metzler
10|11
4.2 Greenโs theorem Let ฮฉ โ โ2 whose boundary ๐ฮฉ has a ๐ถ 1 parameterization. Let ๐ โ ฮฉ and ๐ = ๐๐
๐๐ ๐๐ฅ
โ
๐๐ ๐๐ฆ
where ๐, ๐ โ ๐ถ 1 (๐). Then
๐๐
โซฮฉ โซ ( ๐๐ฅ โ ๐๐ฆ ) ๐๐ = โซ๐ฮฉ ๐ ๐๐ฅ + ๐ ๐๐ฆ OR Let ๐ = (๐, ๐) be a vector field then โซ๐ฮฉ ๐ฃ ๐๐ = โซฮฉ โซ rot ๐ฃ ๐๐ where rot ๐ =
๐๐ ๐๐ฅ
โ
๐๐ ๐๐ฆ
and the line integral is taken
round the boundary of ฮฉ in counter-clockwise direction.
4.3 Additional iisdom -
-
2
Parameterintegral2 ๐(๐ฅ) ๐(๐ฅ) ๐ (โซ ๐ (๐ฅ, ๐ก) ๐๐ก) = ๐(๐ฅ, ๐(๐ฅ))๐โฒ (๐ฅ) โ ๐(, ๐(๐ฅ))๐โฒ (๐ฅ) + โซ ๐๐ฅ (๐ฅ, ๐ก) ๐๐ก ๐๐ฅ ๐(๐ฅ) ๐(๐ฅ) Mehrdimensionale Integration Bei der Koordinatentransformation das โ๐โ (o.รค.) nicht vergessen
Differentiation under the integral sign
7/30/2014
Linus Metzler
11|11