Program Notes In the fall of 2011 I was approached by Jesse Milam, a percussion student at East Central University, about the idea of composing a multipercussion duet for his senior recital. We discussed several ideas and quickly arrived at the prospect of a Native American inspired work, given Jesse’s Chickasaw Nation heritage. Pow-wows in Oklahoma feature drumming as a central element with a host drum garnering the most respect and authority. The drum itself is viewed by many as a being, or living entity. During the course of a powwow, one can expect to hear a wide variety of drumming patterns which accompany different song styles and dances. At a large gathering, the multi-tempo drumming of different tribes can be heard from a great distance, creating an incredibly organic and unintentionally polyrhythmic atmosphere.
Pulse Theorem takes much of its inspiration from this atmospheric blending of sounds, utilizing a series of composite rhythms generated by two percussionists. – Benjamin Finley
Performance Notes While the use of authentic Native American drums is desirable, tuning the instruments to identical pitches (between Player 1 and Player 2) is much more easily accomplished using bongos and congas. The pitches should be low and warm, with plenty of impact (especially on the lower drums). Performers should be diligent in preparing each part – using a metronome if possible, as precise sixteenthnote subdivision is key for clear communication of the many composite rhythmic elements. A double-ended, felt/wood tip stick, such as a ProMark SD5, is preferable for both parts. This will help to facilitate quick changes of timbre.
Instrumentation and Setup Pulse Theorem requires 2 players with the following instrumentation: • • • • •
2 woodblocks 2 roto tom frames (spoxe) 2 sets of bongos 2 sets of congas 2 kick drums
ru m kic k
d
a (l co
ng
a (h co
ng
o ng
ow )
h) ig
w) (lo
ig (h ng
o
lo db
bo
/
bo
‚
wo o
ro
to
to
m
ck
fr
h)
am
e
Notation Guide
¿
f
f
f
f
f
Level: Advanced Approx. playing time: 6’00”
to Jesse Milam
Pulse Theorem duet for multipercussion
Benjamin Finley
Purposefully q = 128 Player 1
°
> ff > ff > ff > ff 3x™ 15 > ff > ff > ff > ff > ff > ff > ff > ff > ff > ff ™3 > ff > ff > ff > ff 3x™ 3 ™ / ™4 f f f f ™ 8 f f f f f f f f f f ™4 f f f f ™ f
Player 2
p
f
> f > ff > f > ff > f > ff > f > ff > f > ff > f > ff 3 > ff > ff > ff > ff > > > > ™™43 f ff f ff f ff f ff ™™ 15 / f f f f f f f f f f f f ™™4 f f f f ™™ 8 ¢ f
p
f
4
1
° 15 > f f > f f > f f > f f > f f > f f > f f > f f > f f > f f ™3 > f f > f f > f f > f f 3x™ 35 f f f ™4 f ™ 16 / 8 f f f f f f f f f f p
2
f
15 >f f >f f f >f f >f f f >f f >f f f >f f >f f f >f f >f f f >f f >f f f ™™3 >f f f >f f f >f f f >f f f ™™ 35 / 4 16 ¢ 8 p
f
6
1
° 35 > f > f f > f > f f > f > f f > f > f f > f > f f > f > f f > f > f f ™3 >f f f >f f f >f f f >f f f 3x™ 35 ™4 ™ 16 / 16 f f f f f f f f f f f f f f p
2
f
35 >f f >f f >f f f >f f >f f >f f f >f f >f f >f f f >f f >f f >f f f >f f >f f >f f f ™™3 >f f f >f f f >f f f >f f f ™™ 35 / 4 16 ¢ 16 p
f
8
1
° 35 > f > f f > f > f f > f > f f > f > f f > f > f f > f > f f > f > f f 3 / 16 f f f f f f f f f f f f f f 4 p
> f > f > f f > f > f > f f > f > f > f f > f > f > f f > f > f > f f 3 35 2 / 16 f f f f f f f f f f f f f f f 4 ¢ p 9
1
°
> f f > f f > f f > f f 3x 5 > f f f > f f f > f f f > f f f > f f f 3 ™ ™™ 4 f f f f f f ™ / 4f f f f
p
> f f > f f > f f > f f 5> f f f f > f f f f > f f f f > f f f f 3 ™ ™™ 4 f f f f f ™ 2 / f f 4f ¢ f
> ™™43 f f f >f f f >f f f >f f f ™™ 45 > f f f f > f f f f > f f f f > f f f f / ¢ f f f f f
p
TSPCD-14
6
Pulse Theorem – Finley
1
>
> > > > > f f > f f > f f > f f 3x 5 3 f f f f f ™ ™™ 4 f f f f f f f f ™4 f / f f f f f f f f f f
84
°
f
2
> f f > f f f > f f f > f f f ™™3 >f f f >f f f >f f f >f f f ™™ 5 f / f 4 4 ¢ f f f f f f f f
1
86 ° 5 > f f f > f f f > f f f >f f f f >f f f f >f f f f >f f f f >f f f f > f f f > f f f 3 /4f f f 4 f f
p 2
> f f f f > f f f f > f f f f >f f f f f >f f f f f > f f f f > f f f f > f f f f 3 5 f f f f 4 ¢/ 4 f f p
> > > f f > f f > f f > f f 3x 7 > ff> ff ff> ff 3 f f f f f ™ ™ f f f ™4fff / ™4 f fff fff fff fff
88
1
°
f
pp
cresc. . . . . . . . . . . . . . . .
>ff>ff>ff>ff ™7> fff> fffff> fffff> fffff 3 f ™ f f f f f ™ ™ 2 / 4 4ff ¢ ff ff ff f
pp
cresc. . . . . . . . . . . . . . . .
> > f f > f f f f > f f f f > f f f f f f f f / f f f f f f f f f f
90
1
°
mf
mp
2
> f f f f > f f f f > f f f f > f f f f f f f f / f f f f ¢ f f f f mp
mf
> > > f f f f f f f f f f f f > f f f f f f f f 44 / f f f f f f f f
91
1
°
f 2
> > > > f f f f f f f f f f f f f f f f f f f f 44 / f f f f ¢ f f f f f
TSPCD-14
7
Pulse Theorem – Finley
92
1
C
Pushing forward
° 4f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f /4 ff
2
4f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f / ¢ 4 ff
94
1
2
°
> f f > f f > f f f > f f f > f f f f > f f f f >f f f f f f >f f f f / f f f f
> f f > f f > f f f > f f f > f f f f > f f f f >f f f f f f >f f f f f f ¢/ f f
96
1
2
°
/
¢/
l.v. > > > ¿ ¿ f f f f f f f f f f f f f f f f ‚ f f f f f f f f f f f f f
l.v. > > > ¿ ¿ f f f f f f f f f f f f f f f f ‚ f f f f f f f f f f f f f
l.v. > > ° > f f f > f f f f > f f f f f >f f f f f f f ¿ f f f f f f f ‚ f f / f f 98
1
l.v. > > f f f > f f f f > f f f f f >f f f f f f f ¿ f f f f f f f >‚ f f 2 / f ¢ f
100
1
°
f f f f f f f f f f f f f f f f > f > f f >f f f f >f f f f f >¿ f / f f
f f f f f f f f f f f f f f f f > f > f f >f f f f >f f f f f >¿ f 2 / f ¢ f TSPCD-14
8
Pulse Theorem – Finley l.v. > f f f f ‚ f f f f f f f f f f f 15 f f ™ f f ™ f f ™ f f ™ f f ™ f f ™ / 8 ff ff ™™ ff ff ™™ ff ff ™™ ff ff ™™ ff ff ™™ ff ff ™™
102
1
°
l.v.
> f f f f ‚ f f f f f f f f f f f 15 f ™ 2 / 8 ff ™™ ¢
ff ™™™ ff ™™™ f f
ff ™™™ ff ™™™ ff ™™™ f f f
ff ™™™ f
In a homogeneous texture, with ever-growing intensity
>O ™D ° 3 / 4 F™ 104
1
ff ™™™ ff ™™™ ff ™™™ f f f
∑
‚
∑
‚™
‚ J
‚ ‚™ J
‚
‚™
‚
‚™
‚™
‚ J
mp
>‚ ™ 3 2 / 4 ™ ¢ f
‚™
‚™
‚™
‚™
‚ ‚ J
‚™
‚
‚™
‚™
‚ f
‚™
‚™
‚™
‚™
‚™
mp
110
1
°
‚
‚
‚
/ ‚™
2
‚™
¢/
116
1
°
‚ ‚ f ‰ Œ / fJ ‚™
2
‚™ f™
¢/
122
1
°
‚ ‚™
‚ ‚™ / f
‚™
‚
‚ f ‰ J
‰
‚ ‚
‚™
‚
‚
‚ f f
‚™
‚
f ‚ J f ‚
f
‚f ‚ f Œ J
‚ J f
‚ ‚ ‚™ J J
‚
‚
Œ
‚ ‚ J
‚
‚ ‰ f
‚™
‚
f J
‚™ f™
‚™
‚ ‚ J
‚
‚
f
‚ ‚ j ‚f ™™ ‰ f f f
‚
‚
‚ ‚ J
‚ J
‚
‚
‚™
f f
‚f J f
‚™
‚™
‚
‚
‚™
‚
‚ f
‰ j f
‚f J f
‚™
‚ J
p
‚™ 2
¢/
‚™
‚™
‚™
‚ ‚ ‚ ‚ ‚ f j f ‰ f ‰ f f f fJ f f f p
TSPCD-14
‚ f
‚ f f
‚ f ‰ j f f f
9
Pulse Theorem – Finley
128
1
°
‚ ‚™ / J
‚¿
‚™
‚
‚ ¿ J
‚
‚
‚ ‚ ¿ ‚™ J
‚
‚ ¿
‚ ‚ ‚™ ‰ J J
‚¿
mp
‚ ‚ f f 2 / f ¢ f
134
1
°
‚™
‚ ‚ ‚ ‚ f f ‰ f f f f f fJ f
‚ ¿ ‚ ‚ J
/
‚
‚¿
‚ ‚
‚ ¿ ‰ J
‚ f mp
‚
‚ ‚ ‚ ‚ f j f ‰ f ‰ f f f f fJ f
f
‚
¿ ‚ ‚ ‚
¿ ‚ ‚J ‚
¿ ‚ J
‚
‚ f f
mf
‚ 2
¢/
‚ ‚ ‚ f j f f f ‰ f f f f
‚ ‚ ‚ ‚ f f f f f ‰ f f f f J
‚ f
‚ ‚ ‚ j f f ‰ f f f ‰ f f f J
mf
140
1
°
/
¿ ‚
‚¿
‚ ‚ ¿ ‚™ J
‚¿
‚ ¿
‚ ¿ ‚ ‰ J J
¿ ‚ J
‚¿
¿ ‚ ¿ ‚ ¿ ‚¿ ™™ ¿ ‚ ¿ f
‚ ‚ ‚ ‚ ‚ ‚ f f j f f 2 / ¢ f f f f f ‰ f f f
‚ ‚ ‚ ‚ f f f f f ‰ f f f f J
‚ ‚ j f f f ‰ f f
146
1
°
/ ≈
¿‚ ¿ ‚
‚ ‚™
Œ
‚ ‚ ‚™ J J
‚¿ ™™ ¿ ‚ ¿
≈
¿‚ ¿ ‚ ‚
‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ f f j f ‰ f ‰ f f f 2 / f ¢ f f f f f f f fJ f
152
1
°
/
‚¿ ™™ ¿ ‚ ¿
≈
¿ ‚
¿ ‚ ¿
ff
‚ 2 / ¢ f
‚ f f ‰
‚ j f f f
¿ ‚ ¿™ ‰ J
‚
‚
‚ ‚ ‚ ‚™ J
‚ ‚ ‚ ‚ f f ‰ f f f f f fJ f
> > > > > > > > > > ¿™ ¿™ ¿™ ¿™ f f f¿™ ¿™ f ¿™ f ¿™ f¿™ ¿™ f 15 f J 8 > > > > > > > >
‚ f>¿ >¿™ f>¿ >¿™ f>¿ >¿™ f>¿ >¿™ f>¿ >¿™ f>¿ >¿™ ‰ f f f 15 8 J
ff
TSPCD-14
10
Pulse Theorem – Finley
> f¿™ >
> > f¿™ f ¿™ / J > >
155
1
2
°
¢/
157
1
f>¿
>¿™
f>¿
> ¿™ f > >¿™
> > ¿™ f ¿™ >
f>¿
>¿™
> f¿™ >
f>¿
>¿™
> > > ¿™ f ¿™ f ¿™ > > f>¿
>¿™
f>¿
>¿™
3 4
∑
3 4
∑
E With excited familiarity
° 3> /8f
f f
f
f
f
f f f f
f f
f
f
f f f
f
f f f
f f f f f
f 2
> 3 ¢/ 8 f f
f f f
f f f f
f
f f f
f
f
f f f
f
f f
f f
f
f f
f
f
l.v.
163
1
°
/ f
f f
f
f
f f
f f
f f f f
j f
f
‚
∑
l.v.
2
¢/ f
f f f
168
1
2
°
¿ f f ¿ / f
¿ / ¢ f f
f f f
f
f
f ¿ f f
¿
f f
f
f f f f
f
f
¿ f f ¿ f f ¿ f f
f f
f f
f f f
f
f f f
f
1
¿ f f ¿ / f f
¿ 2 / ¢ f TSPCD-14
f ¿ f
f
f f
f f f f
f f
f f f f f
f f
f f f f
f f
f f
f
f
f
f f f
174
°
j f
‚
∑
f f ¿ f f f
f f
> f ¿ f f
f
f f ¿ f f
>¿
f
> > f f f ¿ f f ¿ f f
¿ f
¿
f
>¿ f >¿ f f f >¿ >¿ f f
f
11
Pulse Theorem – Finley
180
1
°
>¿ >¿ f f f / f
l.v. >¿ >‚ ¿™ ¿™ f f f ff
¿™ ¿™
ff
mp
l.v. > >¿ > > f¿ f f ¿ ‚ f f ¿™ ¿™ f 2 / ¢ f f f
¿™ ¿™
mp
186
1
°
o + o + o + o + o + o + ¿™ ¿™ 15 ‚ ‚™ ‚ ‚™ ‚ ‚™ ‚ ‚™ ‚ ‚™ ‚ ‚™ 3 8 4 ff
F
> f f > f f > f f > f f 2x 5 > f f > f f > f f > f f > f f > f f > f 3 3 ™ ™™ 4 f f f f ™ / 4f f f f f f f 4 2x
f
2
o + o + o + o + o + ¿™ ¿™ 15 ‚™ ‚™ ‚™ ‚™ ‚™ ‚™ ‚™ ‚™ ‚™ ‚™ 3 8 4
p
> f f > f f > f f > f f ™5> f > f f > f > f f > f > f f > f > f f 3 3 ™ f f f ™ ™4f f f f f f f f 4 ¢/ 4 f f
p
188
1
°
2x 3 f >f f f >f f f >f f f >f f ™™ 5 f > f f > f f > f f > f f > f f > f f > 3 ™ ™ / 4 f f f f f f 4 4 f f
p
> f f > f f > f f > f f ™5> f > f f > f > f f > f > f f > f > f f 3 3 ™ f f f ™ ™4f f 2 / f f f f f f 4f 4 ¢ f
p
190
1
°
> f f > f f > f f > 2x 5 f f > f f > f f > f f > f f > f f > f f 3 >¿ ™ ¿™ 3 f f ™ f f f f ™™ 4 / ™4 f f f f f f 4 f™ f
p
194
1
p
¿™
35 16
¿™
¿™
35 16
f
> f f > f f > f f > f f ™ 5 > f > f f > f > f f > f > f f > f > f f 3 >¿ ™ ¿™ 3 ™ f f f ™4f f 2 / ™4 f f f f f f f 4 f™ ¢ f
¿™
f
q. = q More and more deliberate
° 35 > f f f > f f f > f f f > f f f > f f f > f f f > f f f 3 >¿ ™ ¿™ ¿™ ¿™ 4 / 16 f f 4 f™ 4 ff ff ff ff ff ff p
f
> f f f > f f f f f > f f f f f > f f f f f > f f f f f 3 >¿ ™ ¿™ ¿™ ¿™ 4 35 f f 2 / 16 4 f™ 4 ¢ ff ff ff ff ff p
f
TSPCD-14
12
Pulse Theorem – Finley
e. = q
1
196 ° 4 ‚f f ‚f f ‰ ‚f f ‚f /4 J
p
‚ ‚ ‚ f f ‰ f f f J
‚ f
f
‚ ‚ >¿ ™ ¿™ ¿™ ¿™ 7 f f f 43 f ™ 8 sfz
‚ 4 2 / 4 ¢ f
‚ ‚ f f ‰ f f J
‚ ‚ ‚ ‚ ‚ f f f ‰ f f f f ‰ f f f f J J
> 3 ¿ ™ ¿™ ¿™ ¿™ 7 4 f™ 8
p
200
1
sfz
e. = q
° 7 >f f f f f f > f f f f f >f f /8 f
f f f f >f f f f f f >f f f f
p
2
mf
> f f f f f f > f f f f f f 7 f ¢/ 8 f
> f f f f f f > f f f f f f f f
p
mf
accel. 202
1
°
> f f > f f f f f >f f f f f f 3 ¿ ™ / f 4 f™
¿™
¿™
¿™
ff
sfz
> f f f f f f > f f f f f f 3 >¿ ™ 2 / f f 4 f™ ¢
¿™
¿™
¿™
ff
^ f™ ^ f™
> f™
>
>
f™
f™
> f™
>
>
f™
f™
sfz
205
1
G
e. = e A tempo - voracious, merciless
° 4f f f f f f f f f f f f f f f f > f f > f f > f f > f f > f > f f f /4 f f f f f
2
4 f f f f f f f f f f f f f f f f > f f > f f >f f f >f f f >f f >f f / ¢ 4 f f f
> > > > > > > > > > > > f f f f f f f f f f f f f f f f f f f f f f / f f f f f f R f f f f
207
1
°
> f > f f > f > f f > f > f f > f f > f f > f f > f f > f > f f f 2 / f f f f f f R f ¢ f f f f TSPCD-14
4 4 4 4
13
Pulse Theorem – Finley
209
1
°
ff ™™™ f
> > > > > > / f f f f f f f f f f f f f f f
ff ™™™ f
ff ™™™ f
ff ™™™ f
ff f
ff f
ff
ff f
f > f > f f >f f >f f f > f > f 2 / f f f f ¢
ff f
Œ
Œ
ff
211
1
°
/ fff fff
2 / f ¢ ff
215
1
°
/ fff fff
™ 2 / f ¢ ff ™™
ff ™™™ f Œ
1
ff ™™™ f
ff f
fff
fff ™™™
fff ™™™
fff
fff
∑
ff ™™™ f
fff ™™™
fff ™™™
218
° 2 /4
ff f
fff
ff ™™™ f
-j fff
fff
fff
fff ™™™ fff
ff ™™™ f
ff ™™™ f
ff ™™™ f
fff ™™™
fff
ff f
fff ™™™
fff ™™™ fff
ff f
fff ™™™ fff
ff ™™™ f
fff
fff ™™™ fff ™™™
ff ff f f
fff
fff ™™™ fff
ff f
fff
fff fff ™™™
ff ™™™ f
ff f
fff
2 ¢/ 4
∑
ff ™™™ f
fff
fff
fff fff
fff
fff
ff ™™™ f
fff
fff ™™™ fff ™™™
fff ™™™
fff fff
ff ™™™ f fff ™™™
fff ™™™ fff
ff ™™™ f
fff ™™™
ff f
fff ™™™
fff
fff ™™™
fff ™™™ fff
ff f
2 4
fff 42
3 ‚™ ‚™ ¿ ‚™ ‚™ f ‚™ ‚™ ¿ ‚™ ‚™ f ‚™ ‚™ ¿ > >3 ^ > > > ¿ ¿ ¿ ¿ ¿ f f f f f 15 4 f f f f f ff Ó 8 4f f