The HOW of a Hydrogen Organized Washington

Meet

1

H ydrogen the Swiss Army knife of energy. 1.00794

Kardeshev Level 3: Galactic energy

Kardeshev Level 2: Solar system energy Kardeshev Level 1: Sustainable planetary energy

2

Kardeshev Level 0: Fossil & Organic energy

3

4

5

Rubotherm Isosorp 2000 magnetic suspension microbalance. Formerly VCEA Dean Reid Miller’s and modified for cryogenic use. Conducted first ever liquid He – H2 mixture PVT-x measurements. Developed first He-H2 EOS.

6

7

Z n   i  2 J  1 EvJ n e  EvJ / kT  v

K op 

C

0 P , mix

Z ortho ,0 Z para ,0

J

  Z  Z 2  5  2 2 1 C  R        k BT    2   Z 0  Z 0    0 P

2 2  Z Z  Z para ,1    Z ortho,1    5 2  para ,2 ortho ,2     R  y para     yortho     k BT     2  Z para ,0  Z para ,0    Z ortho,0  Z ortho,0        

Latent heat of vaporization

11

1

Mass Flow Rate [kg/hr]

Excess fuel vented

3

0.75

Fuel supplemented by catalyst

Additional fuel required

y[i]

2

0.5 mreq[i]

1

0.25

Addition of catalyst mout[i] Orthohydrogen depleted

0 0

100

200

Time in Flight [hr]

300

0 400

Mole Fraction Orthohydrogen, y[i] [-]

4

A theoretical increase of 50% in cooling capacity is possible

Total energy absorbed (per mole H2)

13

Cooling Capacity Gain [%]

60 Activated Catalyst

50

Non-Activated Catalyst

40 30 20 10 0 10

20

30

40

Vspace [1/min]

14

14

50

60

• •

17

• 74% reduction in heat load compared to no-flow condition

18

19

• • • • • • • •

• • •

25

?

26

28

29

• • • •

31

Hydrogen Safety: Hindenburg vs. Graf Zeppelins

http://heshydrogen.com/the-hindenburg-myth/ 36



• • •

Or LOx O-P Catalyst

2

1 13 J-T 12

12 3 LN2 Boiling Point

4

13

5

5 14

11 6

6 11 7 9

8

10

NE

O-P Catalyst

a T ,      ,   RT



Tc T

 c

 

  ,     0  ,     r  ,    0  ,    ln   ln  

a 

ik

k

  ak ln 1  exp  bk   IdealGasResidual x di ti i i 1

 r  ,     N     N i d  t exp   p   z

N i y

i

di

y

i

ix

2 2  t exp i   Di    i    i     i

Real Fluid Residual

42

i

i