THE INTRINSIC VALUE OF COASTAL WETLANDS Gerardo M. E. Perillo CONICET-Instituto Argentino de Oceanografía Universidad Nacional del Sur
COASTAL WETLANDS are ecosystems t that th t are found f d within ithi an elevation gradient that ranges between subtidal btid l depths d th to t which hi h light li ht penetrates t t to t support photosynthesis of benthic plants and th landward the l d d edge d where h the th sea passes its it hydrologic influence to groundwater and atmospheric t h i processes. (Wolanski et al., 2009)
MAIN TYPES OF COASTAL WETLANDS • • • • •
Seagrasses Tidal flats Salt marshes Mangroves Freshwater marshes
GEOGRAPHIC DISTRIBUTION • • • •
Seagrasses = 165.000-500.000 km2 Marshes > 1.000.000 km2 Tidal Flats > 1.000.000 km2 Mangroves = 230 230.000 000 km2
(Wolanski et al., 2009)
Why are coastal wetlands important? • Buffer between sea and continent • Sediment traps • Areas A off reproduction d ti and d grow off many commercial species • Source of nutrients to the coast • Resting g places p for migratory g y birds • Fisheries and aquaculture • Etc. Etc
Definitions •
Tidal flats – Areas of low relative relief associated to the intertidal zone,, with unconsolidated sediments and without herbaceous vegetation
•
Marshes – Areas of low relative relief associated to the intertidal zone, with unconsolidated sediments and with herbaceous vegetation – They y can be either salt/brackish or fresh
Mangroves
Forest ecosystems
Clasification of Tidal Courses • Cavas de marea = Tidal rills • Surcos de marea = Tidal grooves
• Cárcavas de marea = Tidal gullies • Arroyos de marea = Tidal creeks • Canales de marea = Tidal channels Perillo, 2009
ENVIRONMENTAL IMPACTS Change vs Variability
Perillo & Piccolo, Piccolo in press
MAJOR ISSUES
• SEA LEVEL VARIATIONS • SEDIMENT BALANCE • WAVE ATTENUATION
Variaciones del NMM a lo largo de la Historia Geológica de la Tierra
Variaciones del NMM - Pleistoceno
MSL – LAST POSTGLACIAL
MSL Changes - Southern H.
Isla, 1989
EXAMPLE OF MSL VARIATION BAHIA BLANCA ESTUARY 10
Eleva ación (m m)
5
-1.4 mm/yr 0
1.6 mm/yr
9.4 mm/yr
-5
-10
-15 0
2000
4000
Años AP
6000
8000
Gómez & Perillo, 1995
FUTURE OF MSL Historical Evolution
Predicted Evolution
-Extreme prediction from IPCC (2007) = 88 cm -Flexure effect up to 2x predicted (Syvistki and Saito, 2009)
Punta Piedras
35° 30´ S
Level I = 0-1.5 m Level II = 1.5-2.5 m Level III < 5 m
Bahía de Samborombón
Flooded Area 624 k km2
Nivel II
Punta Rasa
Nivel I 36° 22´ S
Nivel III
R. Sau c
eC hi c
o
Level I = 0-1.5 m Level II = 1.5 1.5-2.5 2.5 m Level III > 2.5 m
BahíaBlanca
Punta Alta Ca na lP rin
cip al
Flooded Area 1611 km2
SEDIMENT BALANCE • Imported by – Rivers – Wind – Tides – Waves – Biological input
• Exported – Tides – Waves – Winds
Rivers - Changes in pp. pp cycles - Dams Winds g in storminess - Changes Tides - Changes in geomorphology - Changes in winds - Changes Ch i rivers in i Waves - Changes in winds - Changes in geomorphology Biological Input - Changes in climatic conditions - Geomorphologic changes - Species modifications
Teledetección para evaluar cambios
Pratolongo et al., 2008
Retraction of shrubs S. perennis marshes
Pratolongo et al., 2008
Expansion S. alterniflora marshes
Pratolongo et al., 2008
CHANGES IN MANGROVE VEGETATION BETWEEN 1976 AND 2001 IN THE ESTUARY OF PARAÍBA DO SUL RIVER
Water Transition Avicennia e Laguncularia Avicennia e Rhizophora Landscape Urban Area
Area (ha)
1976
1986
2001
%
Atafona
147.5
108.6
26.5
-81 -
Gargaú
912.6
431.3
528.9
-42
Graça
37 7 37.7
27 2.7
--
-100 100
Ilha do Lima
191.7
306.2
285.5
+33
Total
1289.5
848.8
841.9
-35 35
Specific Loss: 6,55 ton-Corg.ha-1.yr-1 US$ 447 447,600 600 up to 1 1,342,800 342 800 per year as disruption of general functions US$ 41 million as C sinks for total hectare deforested (US$ 2,000/kg of C) courtesy of C. Rezende (2011)
courtesy of C. Rezende (2011)
Bioestabilization Lister Dybs y Tidal lagoon g
8 July 1996
16 September 1996
courtesy M. Perjup
27 July 1996
28 November 1996
Spatial Varaition of the Surface
20
Bed leve el (cm)
15
20 m fra marsk
10 5 0 -5 -10 J 97 Jan-97
1997
J 98 Jan-98
1998
J 99 Jan-99
1999
J 00 Jan-00
2000
J 01 Jan-01
2001
2002
J 02 Jan-02
2003
J 03 Jan-03
2004
J 04 Jan-04
2005
D 04 Dec-04
D 05 Dec-05
20
Bed level (cm)
15
500m fra marsk
10 5 0 -5 -10 Jan-97
1997
Jan-98
1998
Jan-99
1999
Jan-00
2000
Jan-01
2001
Jan-02
2002
2003
Jan-03
2004
Jan-04
2005
Dec-04
Dec-05
courtesy M. Perjup
BIODESTABILIZATION
5.1 x 106 m3 SSC up p to 5 g/l g
HUMAN DESTABILIZATION
CANOPY PROFILE
Nef (2004)
Marsh
Mud flat
D Depression i and d Shoulder Sh ld att Front F t Edge Ed off the th Spartina S ti anglica li Saltmarsh S lt h Horizontal distance (m) 0
2
4
6
8
10
-300
E lee v a tio n (m m )
-350
Spartina salt marsh
Mudflat
-400 -450 -500
80 mm -550
?
-600 600
Example from the Tavy Estuary (Courtesy of Reg Uncles & John Widd Widdows) )
12
14
•2 Sontek ADV’s deployed for a neap-spring cycle •3 components of velocity measured in 10 min bursts at 10 Hz every 20 min •Pressure measured in 10 minutes bursts at 2 Hz • Bed level measured at the beginning of each burst •SSC based with accoustic backscatter MUDFLAT
SALTMARSH Sediment critical shear stress measured with a Cohesive Shear Meter during exposure
Tidal level
Corrected Bed Elevation
Zero-crossing wave parameters (non-directional) from the pressure time series T Si ifi Significant t period i d (s) ( ) (s) NNW 11 m/s
NW 25 m/s
E - NE 15 m/s
Significant wave height (m) H (m)
N 3 m/s
SE 24 m/s
Spectral wave parameters after correction of the pressure attenuation (Tucker and Pitt 2001) Wave energy gy ((J m-2)
Peak period (s)
(High pass- filtered time series) Normal conditions
Mud deposition event
Normal conditions
Mud d deposition iti event
EFFECT OF THE TIDE AND PLANT CHARACTERISTICS ON WAVE ATTENUATION
WAVE ATTENUATION
Koch et al., 2009 FEE
Proxies for Wave W tt Wattenuation ti
Direct Measurements Spatial
Modeling
Variations as f(species)
Seasonal Variation as f(biomass)
Aereal Cover
Koch et al., 2009 FEE
Koch et al., 2009 FEE
Barbier et al., 2008, Science
CONCLUSIONS • CW are an essential part of the coastal zone • Even in areas with little direct human interaction, they are highly impacted • Ecosystem cosyste se services ces a are e tthe e highest g est o of a all other coastal environments • They overcome the values of most human activities that replace them • Preservation and restoration of CW are key to maintain most of these ecosystem value
MUITO OBRIGADO THANK YOU