Home
Add Document
Sign In
Create An Account
Trigonometry: PolarEquations: anIntroduction by: javier
Download PDF
Comment
Report
4 Downloads
43 Views
Trigonometry: Polar Equations: an Introduction
by: javier
Polar Equation the difference
the difference
the Cartesian approach to coordinates
the difference
y
(3, 4)
x
the difference
11
12 y
1 5
10
(3, 4) (5, 1 : 05 o′ clock) 2
9
x 4
8 5
7 6
3
the difference
105 120◦ 135◦ 150◦
◦ y90◦
75◦
(3, 4) 60◦
(5, 52o )
45◦ 30◦
165◦
15◦
180◦
0◦ 1 2 3 4 5x 345◦
195◦
330◦ 210◦ ◦ 225 315◦ ◦ ◦ 300 240 255◦ 270◦ 285◦
the difference
y
(x, y) (r, θ) r θ x
y
x
potting points on Polar Equations graph r = 5 cos(θ)
potting points on Polar Equations graph r = 5 cos(θ) θ
r
0 15 30 45 60 75 90 120 150 180
5.0 4.8 4.3 3.5 2.5 1.3 0.0 -2.5 -4.3 -5.0
120◦
◦ 105◦ 90 75◦
135◦
60◦
45◦
150◦
30◦ 15◦
165◦ 180◦
1 2 3 4 5 6 7
195◦
345◦
330◦
210◦ 225◦ 240◦
0◦
315◦
255◦ 270◦ 285◦
300◦
potting points on Polar Equations r = 3 + 5 sin(θ)
potting points on Polar Equations r = 3 + 5 sin(θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
plot by thinking, finding max and min r values r = 5 sin(2θ)
plot by thinking, finding max and min r values r = 5 sin(2θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
plot by thinking, finding max and min r values r = 5 cos(3θ)
plot by thinking, finding max and min r values r = 5 cos(3θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
plot by thinking, finding max and min r values r = 10 sin(5θ)
plot by thinking, finding max and min r values r = 10 sin(5θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
graph by converting to cartesian r = 10 sin(θ)
graph by converting to cartesian r = 10 sin(θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
graph by machine
graph r2 = 4 cos(2x) polar sage
graphing Polar Equations find start and end of a portion of graph
find start and end of a portion of graph r = 7 sin(3θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
find start and end of a portion of graph r = 3 + 7 cos(θ) 120◦
90◦
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
find start and end of a portion of graph Determine the area that lies inside r = 5 − 3 cos(θ) and outside r = 4 ◦ 120◦
90
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
find start and end of a portion of graph Determine the area that lies inside r = 5 − 3 cos(θ) and outside r = 4 ◦ 120◦
90
60◦
150◦
30◦
0◦
180◦
330◦
210◦ 240◦
270◦
300◦
Recommend Documents
Trigonometry: Introduction to Graphing by: javier AWS
Trigonometry: Introduction to Graphing by: javier
Trigonometry: The Reference Triangle by: javier
Calculus: BasicTechniquesforFindingLimits by: javier
Calculus: BasicTechniquesforFindingLimits by: javier
Calculus: DirectionalLimits by: javier
Trionometry: RatioNirvana by: javier
Math252CalculusIII:VectorCalculusOverview by: javier
Calculus: Continuity by: javier
×
Report Trigonometry: PolarEquations: anIntroduction by: javier
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Login with Facebook
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & Close