Trigonometry Revision 3

Report 10 Downloads 48 Views
Core 2 Revision 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

1

2

4

Chapter 4: The Sine and Cosine Rules

General info. 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

ü Sine and Cosine Rules are used to find the length or angle of a non- right angle triangle. A Ø  Side C

Side B C

Side A

B

1

2

4

Sine Rule 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  To find a side length:

a Sin A

b Sin B

c Sin C

1

2

4

ü  The Sine Rule is NOT in the formula booklet so make sure you learn it, it is not a difficult one.

Sine Rule 2 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  To find an angle: Sin A Sin B a b

Sin C c

1

2

4

§  Remember: ü To find a side length put length on top, ü To find an angle put the angle on top.

Sine Rule- Length example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example of trying to find a side length: a cm

107º

Not drawn to scale

a Sin 30

6 6 Sin 30 Sin 107 Sin 107 3.14 cm

1

2

Find length a?

30º

6 cm

a Sin A

4

b Sin B

c Sin C

Sine Rule- Angle example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example of trying to find an angle: B 91º 11.1 cm

A

12.3 cm

Sin A a

Not drawn to scale

For angle A: Sin 91 12.3

b 11.1

For angle C: 91.1+ 64.5= 155.6º 180- 155.6= 24.4º

1

Find angle C and A?

C

11.1 Sin91 12.3

64.5º

2

4

Sin B Sin C b c

Area of a triangle 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  To find the area of a triangle the formula is as follows: ½ a b Sin C ü  The area of a triangle is not in the ½ b c Sin A formula booklet, so it ½ a c Sin B is important that you

1

learn it.

2

4

Area of a triangle- Example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example question of how to calculate the area of a triangle.

1

1. A triangle has two lengths of 3 cm and 4 cm and the angle in between is 123º area of a triangle= ½ a b Sin C ½ (3)(4) Sin 123= 5.03cm2

2

4

Cosine Rule 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  To find the length: a2 = b2 + c2- (2bc Cos A) b2 = a2 + c2- (2bc Cos B) c2 = a2 + b2- (2bc Cos C)

1

2

4

ü The Cosine Rule is in the formula booklet so you don’t have to learn it.

Cosine Rule 2 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  To find an angle: Cos A= b2 + c2 – a2 2bc Cos B = a2 + c2 – b2 2bc

Cos C = a2 + b2 – c2 2bc

2

ü The Cosine Rule is given in the formula booklet, but you need to be able to rearrange the formula finding the length to finding the angle.

1

4

Cosine Rule- Length example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example to trying to find a length using the cosine rule: A

a2 = b2 + c2- (2bc Cos A) 15.1 cm

C

14.2 cm Not drawn to scale

23º

B

1

2

4

Find the length AC?

15.12 + 14.22 – 2(15.1)(14.2) Cos 23 = 228.01 + 201.64 – 428.84 Cos 23 = 429.65 – 428.84 Cos 23 = 429.65 – 394.75 = Square root of 34.9 = 5.91 cm

Cosine Rule- Angle example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example of trying to find an angle using the cosine rule: Cos A= b2 + c2 – a2 2bc A 7 cm B 10 cm Not drawn to scale

C

2

4

102 + 82 – 72 2(10)(8)

8 cm

1

Find the smallest angle?

115 = 0.72 100

Cos-1 0.72= 44º

100 + 64 - 49 100

Solving triangles 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

Ø When you are given two sides and an included angle (angle in between the two sides), use Cosine Rule to find the third length. - To find the second angle use Sine Rule - To find the last angle use basic geometry.

1

2

4

Solving triangles 2 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

Ø When you are given two angles and a side, use Sine Rule to find the second side. - To find the last angle, use basic geometry. - To find the last side, use the Sine Rule.

1

2

4

Solving triangles 3 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

Ø When you are given three sides, use the Cosine Rule to find the first angle. - To find the second angle, use the Sine Rule. - To find the last angle, use basic geometry.

1

2

4

Solving triangles 4 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

Ø When you are given two sides and a nonincluded angle (angle not between the two given sides), use Sine Rule to find the two angles. - Or to find two possible sides, use the Sine Rule.

1

2

4

Solving triangles- Example 0 0 1 1  0 0 1 0  1 0 1 0  1 1 0 1  0 0 0 1  0 1 0 0  1 0 1 1

§  Here is an example of solving a triangle: A A

50º 60º B

C

5 cm Not drawn to scale

1

Ø Given two angles and a side, so use Sine Rule.

2

4

1.  To get angle C do: 50 + 60= 110 180- 110= 70º

2. To get another side do: 5 a 5 Sin 60 Sin 50 Sin 60 Sin 50

3. To get the last side do: c 5.65 5.65 Sin 70 Sin 70 Sin 60 Sin 60

= 5.65 cm (Side B)

= 6.13 cm (Side C)