Any specific imputed values for missingness represent one set of an infinite number of plausible values that may have been imputed. 1. Determine prediction equation for imputation of missingness (e.g., Yˆ a b1 X1 b2 X 2 e ). 2. Consider sampling error of the bi in this equation and select another set of plausible bi (call this set of regression slopes bi* ). 3. Use the bi* to make a second prediction of each missing value. 4. Repeat steps 2 & 3 several more times, each imputation yielding a separate “complete” set of data. 5. Analyze each complete set of data and average the results (e.g., compute mean regression weight, mean structure coefficient, etc.). 6. Consider variability in these summary statistics across the multiple imputations (imputation error). Total error T2 = average estimation error E2 + imputation error I2
2
data one; input Y X1 X2; cards; 44.609 11.37 178 45.313 10.07 185 54.297 8.65 156 59.571 . . 49.874 9.22 . 44.811 11.63 176 . 11.95 176 . . . 46.672 10.00 . 46.774 10.25 . 50.388 10.08 168 39.407 12.63 174 46.080 11.17 156 45.441 9.63 164 . 8.92 . 47.920 11.50 170 47.467 10.50 170 ; proc mi data=one out=imputed; proc print data=imputed; title 'Contents of Data = IMPUTED'; proc reg data=imputed outest=outreg covout noprint; model Y = X1 X2; by _Imputation_; proc print data=outreg; title ‘Output from PROC REG’; proc mianalyze data=outreg; modeleffects Intercept x1 x2; run;