From the Big Bang to Dark Energy Outline 4. Infla1on and Dark Energy

Report 2 Downloads 55 Views
From  the  Big  Bang to  Dark  Energy Hitoshi Murayama Kavli IPMU, University of Tokyo UC Berkeley, Lawrence Berkeley Laboratory

1 Credit:  NASA

How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws? Where do we come from? Now in the realm of science!

Credit:(aNGeLic!(by(Rolfe(Kolbe( h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2

Outline 1. From daily life to Big Bang 2. Birth of elements and Higgs boson 3. Dark matter and anti-matter 4. Inflation and Dark energy

3

4.  Infla?on and  Dark  Energy

4

Infla?on

Credit:  NASA

5

8B

13.

rs ky 380

yrs

in 3m ec th s lion -bil ten sec nth illio

1 tr

Higgs DM

CMB

Credit:  C.  Amsler  et  al.    (Par?cle  Data  Group),  Physics  LeIers  B667,  1  (2008)

6

yrs

rs ky

8B

13.

380

in 3m ec th s lion -bil ten sec nth illio 1 tr Higgs DM

CMB

Credit:  C.  Amsler  et  al.    (Par?cle  Data  Group),  Physics  LeIers  B667,  1  (2008)

6 A  one  million  mark  note  used  as  a  notepad

Credit:  Bundesarchiv,  Bild  183-­‐R1215-­‐506,  CC  BY-­‐SA  3.0

Credit:  Bundesarchiv,  Bild  102-­‐00193,  CC  BY-­‐SA  3.0

Credit:  Bundesarchiv,  Bild   102-­‐00104  /  Pahl,  Georg,  CC   BY-­‐SA  3.0

Notes  used  as   wallpaper

Hundred  billion  mark  note

7

Credit:  Dr  Graham  Beards,  CC  BY  3.0

Credit:  NASA

8

Credit:  Dr  Graham  Beards,  CC  BY  3.0

Credit:  NASA

8

Credit:  Dr  Graham  Beards,  CC  BY  3.0

>1026

Credit:  NASA

8

Why  do  they  all  look   the  same?

• Like having discovered two

remote islands in very different parts of the world, speaking the same language

• even the accents are nearly the same: one part in 100,000

• we suspect they had Credit:  NASA

communication

9

10

11 fly-­‐by  simula?on  based  on  real  data

Credit:  Sloan  Digital  Sky  Survey

12 fly-­‐by  simula?on  based  on  real  data

Credit:  Sloan  Digital  Sky  Survey

about  ten  trillion  ?mes  faster  than  light

12

fly-­‐by  simula?on  based  on  real  data

Credit:  Sloan  Digital  Sky  Survey

about  ten  trillion  ?mes  faster  than  light prac?cally  the  same  no  maIer  how  far  you  go

12

more  or  less  uniform small  winkles

2  billion  light  years

Credit:  Sloan  Digital  Sky  Survey

13

equa?on  for  cosmic   expansion m

R M

14

equa?on  for  cosmic   expansion m

R M

14

equa?on  for  cosmic   expansion F = ma

m

R M

14

equa?on  for  cosmic   expansion F = ma

F =

G

Mm R2

m

R M

14

equa?on  for  cosmic   expansion F = ma

F = a=

G

Mm R2

d2 R dt2

m

R M

14

equa?on  for  cosmic   expansion F = ma

F = a=

G

Mm R2

d2 R dt2

m

R M

2

M d R = −G 2 R dt 2

14

equa?on  for  cosmic   expansion F = ma

F =

G

Mm R2

m

R

d2 R dt2

a=

M

2

M d R = −G 2 R dt 2 "=

1 2



dR dt

◆2

G

M R

14

equa?on  for  cosmic   expansion F = ma

F =

G

Mm R2

m

R

d2 R dt2

a=

M

2

M d R = −G 2 2 R dt conserved ✓ ◆2 "=

dR dt

1 2

G

M R

14

equa?on  for  cosmic   expansion F = ma

F =

G

Mm R2

m

R

d2 R dt2

a=

M

2

M d −G 2 2R = R dt conserved ✓ ◆2 "=

1 2

dR dt

G

M =0±0.01 R

14

equa?on  for  cosmic   expansion conserved ✓ ◆ "=

1 2

dR dt

2

G

M R =0

R M

15

equa?on  for  cosmic   expansion conserved ✓ ◆ "=

1 2

dR dt

2

G

M =0 R

in  terms  of  mass  density  ρ

R M

15

equa?on  for  cosmic   expansion conserved ✓ ◆ "=

1 2

dR dt

2

G

M =0 R

in  terms  of  mass  density  ρ M=

4⇡ 3 ⇢R 3

R M

15

equa?on  for  cosmic   expansion conserved ✓ ◆ "=

1 2

dR dt

2

G

M =0 R

in  terms  of  mass  density  ρ M=

R˙ R

!2

4⇡ 3 ⇢R 3

=

R M

8⇡ G⇢ 3

15

equa?on  for  cosmic   expansion conserved ✓ ◆ "=

1 2

dR dt

2

G

M R =0

in  terms  of  mass  density  ρ M=

R˙ R

!2

4⇡ 3 ⇢R 3

=

R M

8⇡ G⇢ 3

Friedmann  equa?on

15

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

R M

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ

R M

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ H2 =

8⇡ G⇢ 3

R M

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ H2 =

8⇡ G⇢ =const 3

R M

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ H2 =

8⇡ G⇢ =const 3

R M

dR = HR dt

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ H2 =

8⇡ G⇢ =const 3

R M

dR = HR dt

R(t) = R(0) e Ht

16

equa?on  for  cosmic   expansion

Friedmann  equa?on R˙ R

!2

=

8⇡ G⇢ 3

if  constant  mass  density  ρ H2 =

8⇡ G⇢ =const 3

R M

dR = HR dt

R(t) = R(0) e Ht Universe  expands  exponen?ally!

16

17

constant energy per  volume

1

17

constant energy per  volume

1

8

17

constant energy per  volume

1

8

total energy keeps growing like volume R(t)3∝e3Ht

17

constant energy per  volume

1

8

total energy keeps growing like volume R(t)3∝e3Ht energy grows like volume makes the expansion faster energy grows even more

17

Ul?mate  Free  Lunch! constant energy per  volume

1

8

total energy keeps growing like volume R(t)3∝e3Ht energy grows like volume makes the expansion faster energy grows even more

17

Ul?mate  Free  Lunch! constant energy per  volume

1

8

total energy keeps growing like volume R(t)3∝e3Ht energy grows like!!volume makes the expansion faster energy grows even more

17

catch: Uncertainty  Principle

18

physics  is  uncertain

Credit:  ©  Hitachi,  Ltd.  1994,  2013.   All  rights  reserved.

Akira  Tonomura

19

physics  is  uncertain

Credit:  ©  Hitachi,  Ltd.  1994,  2013.   All  rights  reserved.

Akira  Tonomura

19

interference  of  waves

a  par?cle  is  a  wave a  wave  is  a  par?cle

20

interference  of  waves

a  par?cle  is  a  wave a  wave  is  a  par?cle

20

quantum mechanics • law of physics at subatomic scales • uncertainty principle • you can’t predict what happens each time • but over time you find a regular pattern • a particle is a wave • a wave is a particle • when squeezed into narrow

Credit:  Armedblowfish,  BSD

space, wave is amplified

21

quantum mechanics • law of physics at subatomic scales • uncertainty principle • you can’t predict what happens each time • but over time you find a regular pattern • a particle is a wave • a wave is a particle • when squeezed into narrow

Credit:  Armedblowfish,  BSD

space, wave is amplified

21

quantum mechanics • law of physics at subatomic scales • uncertainty principle • you can’t predict what happens each time • but over time you find a regular pattern • a particle is a wave • a wave is a particle • when squeezed into narrow

Credit:  Armedblowfish,  BSD

space, wave is amplified

21

near  sighted • What you are seeing one

moment is gone by inflation the next moment

• feel very near-sighted • “horizon” ≈ H • small space I

–1

⇒big uncertainty

22

near  sighted • What you are seeing one

moment is gone by inflation the next moment

• feel very near-sighted • “horizon” ≈ H • small space I

–1

⇒big uncertainty

22

near  sighted • What you are seeing one

moment is gone by inflation the next moment

• feel very near-sighted • “horizon” ≈ H • small space I

–1

⇒big uncertainty

22

vacuum  is  ac?ve

Quantum  Chromodynamics  movies  are   provided  at hNp://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

23

seed  for  diversity • universe was born tiny • entire visible universe was • • •

smaller than 10–26 cm ripples were made by uncertain principle only 1mm ripple on 100m deep ocean ripples get stretched to macroscopic size

24

seed  for  diversity • universe was born tiny • entire visible universe was • • •

Credit:  NASA

smaller than 10–26 cm ripples were made by uncertain principle only 1mm ripple on 100m deep ocean ripples get stretched to macroscopic size

Credit:  Sloan  Digital  Sky  Survey

24

Geeng  stronger 1.0

0.8

0.6

0.4

0.2

–3

–2

–1

1

2

3

25

Geeng  stronger 1.0

0.8

0.6

0.4

0.2

Credit:  NASA

–2

–1

1

2

3

distribu?on

–3

ΔT

25

Geeng  stronger • If simple quantum

fluctuation, it must be distributed as Gaussian

1.0

0.8

0.6

0.4

0.2

Credit:  NASA

–2

–1

1

2

3

distribu?on

–3

ΔT

25

Geeng  stronger • If simple quantum

fluctuation, it must be distributed as Gaussian

1.0

0.8

0.6

0.4

0.2

–3

Credit:  NASA

–2

–1

1

2

3

distribu?on



Indeed!

ΔT

25

Geeng  stronger • If simple quantum

fluctuation, it must be distributed as Gaussian

1.0

0.8

0.6

• Indeed! • further tests of non-

0.4

0.2

Gaussianity at Planck

Credit:  NASA

–2

–1

1

2

3

distribu?on

–3

ΔT

25

• •

infla?on

scalar field with rather flat potential (compared to the Planck scale), λ≈10–11 the equation of motion has a “friction term”

V(φ) φ

¨+ ¨ +3H ˙ =V V0 (0 () ) 3H˙ =

• slow-roll solution with more or less constant H

| ¨| ⌧ | ˙ | = V 0 ( ) H 2 =

8⇡ V 3 MP2 l

• Universe expands exponentially R(t) ∝  e • need e-folding N=Ht > 60 to

φ t

Ht

solve the problem

log  R t

HM,  Suzuki,  Yanagida,  Yokoyama

26

S?ll  many  mysteries • What caused inflation? • What time? • How much? • Definitive proof? 27

S?ll  many  mysteries • What caused inflation? • What time? • How much? • Definitive proof?

E-­‐mode

B-­‐mode polariza?on

27

How  do  we  know it  really  happened?

• everything gets quantum

fluctuation, including gravitons Gravitons from quantum fluctuation gives B-mode polarization in CMB The size is directly proportional to the inflationary energy scale ⇒ e.g., Planck, POLARBEAR, LiteBIRD

E-­‐mode

B-­‐mode

• •

28

How  do  we  know it  really  happened?

• everything gets quantum

fluctuation, including gravitons Gravitons from quantum fluctuation gives B-mode polarization in CMB The size is directly proportional to the inflationary energy scale ⇒ e.g., Planck, POLARBEAR, LiteBIRD



E-­‐mode

B-­‐mode Credit:  KEK  CMB  Group  /  JAXA



LiteBIRD

28

LiteBIRD  sensi?vity

Credit:  KEK  LiteBIRD  Working  Group  /  JAXA

29 13.

rs

yrs

ky

8B

380

sec nth illio

in 3m

1 tr Higgs

CMB

Credit:  C.  Amsler  et  al.    (Par?cle  Data  Group),  Physics  LeIers  B667,  1  (2008)

30

8B 13.

rs

yrs

ky

380

sec nth illio ??? ec? –34 s

in 3m

1 tr 10

inflation

Higgs

CMB

Credit:  C.  Amsler  et  al.    (Par?cle  Data  Group),  Physics  LeIers  B667,  1  (2008)

30

fate  of  the  Universe

Credit:  NASA

31

expansion

same  as   a  ball

32

expansion

same  as   a  ball

32

expansion

same  as   a  ball

decelera?on

32

three  possible  fates • if large amount of matter,

expansion stops and heads back to a Big Crunch expansion will go on forever

• study the expansion

history and predict the future!

size  of  the  Universe

• if small amount of matter,

?me

33

three  possible  fates • if large amount of matter,

expansion stops and heads back to a Big Crunch Credit:  NASA

expansion will go on forever

• study the expansion

history and predict the future!

size  of  the  Universe

• if small amount of matter,

?me

33

Future  observers

34

Future  observers • as the Universe gets

bigger, we will be able to see more and more galaxies

• the observation becomes more fun!

34

Dark  Energy

Credit:  NASA

35

Credit:  NASA

36 Dark Energy

Dark Energy Dark Energy

Dark Energy Dark Energy

Dark Energy Dark Energy

Dark Energy

Dark Energy

Dark Energy Dark Energy Credit:  NASA

Dark Energy Dark Energy

Dark Energy Dark Energy

36

Type-­‐Ia  supernovae

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae • Type-Ia supernova

becomes brighter than the whole galaxy

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae • Type-Ia supernova •

becomes brighter than the whole galaxy How bright it looks ⇒ How far away ⇒ How far back in time

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae • Type-Ia supernova • •

becomes brighter than the whole galaxy How bright it looks ⇒ How far away ⇒ How far back in time How red it looks ⇒ How much expansion

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae • Type-Ia supernova • • •

becomes brighter than the whole galaxy How bright it looks ⇒ How far away ⇒ How far back in time How red it looks ⇒ How much expansion Expansion of the Universe is getting faster!

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae Credit:  KMJ,   CC  BY-­‐SA  3.0

• Type-Ia supernova • • •

becomes brighter than the whole galaxy How bright it looks ⇒ How far away ⇒ How far back in time How red it looks ⇒ How much expansion Expansion of the Universe is getting faster!

Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37

Type-­‐Ia  supernovae Supernova  Cosmology  Project   (Amanullah,  et  al.,  2010)

Credit:  KMJ,   CC  BY-­‐SA  3.0

• Type-Ia supernova



n ?o era ?on l e acc celera de Supernova  Cosmology  Project  (PerlmuIer,  et  al.,   1998)

37 Supernova Cosmology Project Supernova   Cosmology   Project  (Knop,  et  al.,  2010)ΩΜ , ΩΛ Knop et al. (2003)

0.25,0.75 0.25, 0 1, 0

24

Supernova Cosmology Project

22

Credit:  NASA Thermonuclear  Supernovae   (PerimuIer,  et  al.,  1997)

effective mB



20

18

Calan/Tololo & CfA 16

14 1.0

supernovae on  demand

mag. residual from empty cosmology



becomes brighter than the whole galaxy How bright it looks ⇒ How far away ⇒ How far back in time How red it looks ⇒ How much expansion Expansion of the Universe is getting faster!

ΩΜ , ΩΛ

0.5

0.25,0.75

0.0

0.25, 0

0.5 1.0 0.0

1,

0.2

0.4

0.6

0.8

0

1.0

redshift z

38

stretch  factor • it is not quite standard • correlation between duration time and the absolute brightness

• can be “fixed” by a “stretch factor”

• other smaller concerns with environment (metallicity), dust extinction, etc

39 Pierre  An?logus Marc  Betoule Stat ~ x 10 since the 1998 discovery papers

14 HST SNe Ia (z~0.7-1.4), Riess 2007 242 SNLS SNe Ia (z~0.2-1), Sullivan 2011 93 SDSS SNe Ia (z~0.1-0.4), Holzman 2009 123 Low-z SNe Ia (z~0.05), Hamuy96, …. 472 SNe Ia total

Guy et al, 2010 – Conley et al 2010, Sullivan et al, 2011 Dark Energy - Blois 2012

9

40 expansion

41 expansion

41

expansion

same  as a  ball

expansion

same  as a  ball

size  of  the  Universe

41

should  slow   down ?me

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr)

41

same  as a  ball

size  of  the  Universe

expansion

speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing!

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy • Was Einstein wrong?

41

same  as a  ball

size  of  the  Universe

expansion

speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy • Was Einstein wrong? • new paradigm of the Universe, fundamental laws

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy • Was Einstein wrong? • new paradigm of the Universe, fundamental laws • If the rate of energy increase very quick, eventually the expansion becomes infinitely fast ⇒ Will the Universe end??

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy • Was Einstein wrong? • new paradigm of the Universe, fundamental laws • If the rate of energy increase very quick, eventually the expansion becomes infinitely fast ⇒ Will the Universe end??

expansion

same  as a  ball

size  of  the  Universe

41 speeding  up! should  slow   down ?me

• expansion started to speed up recently (~7Byr) • energy is increasing! • infinite source of energy?? dark energy • Was Einstein wrong? • new paradigm of the Universe, fundamental laws • If the rate of energy increase very quick, •

eventually the expansion becomes infinitely fast ⇒ Will the Universe end?? Need to measure the rate of energy increase!

41

Accelera?on • w: equation of state parameter

• radiation: w=1/3 • matter: w=0 • vacuum energy: w=–1 • acceleration: w