From the Big Bang to Dark Energy Outline power spectrum

Report 2 Downloads 46 Views
From  the  Big  Bang to  Dark  Energy Hitoshi Murayama Kavli IPMU, University of Tokyo UC Berkeley, Lawrence Berkeley Laboratory

1 Credit:(NASA(

How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws? Where do we come from? Now in the realm of science!

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2

Outline 1. From daily life to the Big Bang 2. Birth of elements and Higgs boson 3. Dark matter and anti-matter 4. Inflation and Dark energy

3

power  spectrum

Credit:  NASA

4

CMB protons

• photon pressure ⇒ “sound waves”

quasars

electrons

galaxies

cosmic  microwave  background recombina7on



before recombination, there was a fluid of protons, electrons, photons, dark matter (and neutrinos)

   Big  Bang      

380k  yrs

a  few  100M  yrs

13.8B  yrs

7me

5 WMAP Wilkerson  Microwave Anisotropy  Probe

assump@on

Credit:  NASA

• a random density

• “knows” about everything between 030% in the vicinity of the third acoustic peak (at l ≈ 800), while the two bins from l = 1000 to 1200 are new with the seven-year data analysis.

2.4. Temperature–Polarization (TE, TB) Cross Spectra The seven-year temperature–polarization cross-power spectra were formed using the same methodology as the five-year spectrum (Page et al. 2007; Nolta et al. 2009). For l ! 23, the cosmological model likelihood is estimated directly Credit:  Wayne  Hu from low-resolution temperature and polarization maps. The hLp://background.uchicago.edu/~whu/metaanim.html temperature input is a template-cleaned, co-added V + W-band map, while the polarization input is a template-cleaned, coadded Ka + Q + V-band map (Gold et al. 2009). In this regime, the spectrum can be inferred from the conditional likelihood of Cl values (individual or binned), but these estimates are only used for visualization. For l > 23, the temperature-polarization spectra are derived using the MASTER quadratic estimator, extended to include polarization data (Page et al. 2007). (As above, the MASTER spectrum is evaluated from l = 2, but the result from l = 2–23 is discarded.) The temperature input is a template-cleaned, co-added V+W-band map, while the polarization input is a template-cleaned, co-added Q+V+W-band map. The inclusion of W-band data in the high-l TE and TB spectra is new with the

7

spa@al  curvature

4

Credit:  NASA

Ωk  changes  the  apparent  angular  size   of  the  peak  posi7ons

8

spa@al  curvature

Credit:  NASA

Credit:  Wayne  Hu hNp://background.uchicago.edu/~whu/animbut/anim3.html

Ωk  changes  the  apparent  angular  size   of  the  peak  posi7ons

8

atoms

Credit:  Wayne  Hu hNp://background.uchicago.edu/~whu/animbut/anim1.html Credit:  Wayne  Hu hNp://background.uchicago.edu/~whu/animbut/anim1.html

Ωb  changes  the  rela7ve  size  of even  and  odd  peaks

9

atoms

Credit:  Wayne  Hu hNp://background.uchicago.edu/~whu/animbut/anim1.html Credit:  Wayne  Hu hNp://background.uchicago.edu/~whu/animbut/anim1.html

Ωb  changes  the  rela7ve  size  of even  and  odd  peaks

9

Credit:  NASA

Energy  Budget   of  the  Universe

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5%

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5% • Neutrinos are ~0.1–0.7%

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5% • Neutrinos are ~0.1–0.7% • Rest of ordinary matter

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

(electrons, protons & neutrons) are ~4.4%

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5% • Neutrinos are ~0.1–0.7% • Rest of ordinary matter

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

(electrons, protons & neutrons) are ~4.4%

• Dark Matter ~25%

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5% • Neutrinos are ~0.1–0.7% • Rest of ordinary matter • •

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

(electrons, protons & neutrons) are ~4.4% Dark Matter ~25% Dark Energy ~70%

10

Credit:  NASA

Energy  Budget   of  the  Universe

• Stars and galaxies are only ~0.5% • Neutrinos are ~0.1–0.7% • Rest of ordinary matter

Credit:  NASA

Planck stars neutrinos baryon dark  maNer dark  energy

(electrons, protons & neutrons) are ~4.4% Dark Matter ~25% Dark Energy ~70%

• • • Anti-Matter 0%

10

3.  Dark  maLer and  an@-­‐maLer

11

dark  maLer

12

solar system

Credit:  NASA/JPL

13

solar system

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

13

solar system

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

13

1 v/p r

solar system

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

13

a  hundred  billion   stars

28,000  lyrs

Credit:  NASA

14 solar  system  revolves  at  220  km/s what  is  pulling  us  inside?

a  hundred  billion   stars

28,000  lyrs

Credit:  NASA

14 solar  system  revolves  at  220  km/s what  is  pulling  us  inside?

a  hundred  billion   stars

28,000  lyrs

Credit:  NASA

14 solar  system  revolves  at  220  km/s what  is  pulling  us  inside?

a  hundred  billion   stars

28,000  lyrs no  stars

Credit:  NASA

14

Credit:  Jschulman555 hLp://commons.wikimedia.org/wiki/File:NGC_4565_and_4562.jpg

15

Andromeda=2.5M  lyrs  away also  dark  maNer  important

Credit:  NASA

16

Credit:  ESA/Hubble  and  NASA

17

Credit:  Vicent  Peris,  CC  BY-­‐SA  2.0 hLp://commons.wikimedia.org/wiki/File:NGC_7331_-­‐_Peris.jpg

18

Credit:  Vicent  Peris,  CC  BY-­‐SA  2.0 hLp://commons.wikimedia.org/wiki/File:NGC_7331_-­‐_Peris.jpg

18

Vera Rubin 1970’s

Credit:  NOAO/AURA/NSF

19

true  nature  of  galaxies 100k  lyrs stars

dark  maLer

>M lyrs

20

Credit:  Based  on  observa7ons  made  with  the  NASA/ESA  Hubble  Space   Telescope,  and  obtained  from  the  Hubble  Legacy  Archive,  which  is  a   collabora7on  between  the  Space  Telescope  Science  Ins7tute  (STScI/NASA),  the   Space  Telescope  European  Coordina7ng  Facility  (ST-­‐ECF/ESA)  and  the  Canadian   Astronomy  Data  Centre  (CADC/NRC/CSA),  Image  processed  by  c_cld  hNp:// www.galaxyzooforum.org/index.php?topic=6927.msg610555#msg610555

21

Credit:  Based  on  observa7ons  made  with  the  NASA/ESA  Hubble  Space   Telescope,  and  obtained  from  the  Hubble  Legacy  Archive,  which  is  a   collabora7on  between  the  Space  Telescope  Science  Ins7tute  (STScI/NASA),  the   Space  Telescope  European  Coordina7ng  Facility  (ST-­‐ECF/ESA)  and  the  Canadian   Astronomy  Data  Centre  (CADC/NRC/CSA),  Image  processed  by  c_cld  hNp:// www.galaxyzooforum.org/index.php?topic=6927.msg610555#msg610555

Cheshire  cat

21

cluster  of  galaxies

Abell  2218 2.1B  lyrs Credit:  Andrew  Fruchter  (STScI)  et  al.,  WFPC2,  HST,  NASA

22

Credit:  NASA,  ESA  &  L.  Calçada

deflec@on  angle by  a  point  lens ✓=

4GN m c 2 rc

23

Credit:  NASA,  ESA  &  L.  Calçada

deflec@on  angle by  a  point  lens ✓=

Credit:  NASA,  Andrew  Fruchter  and  the  ERO  Team   [Sylvia  BaggeL  (STScI),  Richard  Hook  (ST-­‐ECF),   Zoltan  Levay  (STScI)]  (STScI)

4GN m c 2 rc

23

Credit:  NASA,  ESA  &  L.  Calçada

deflec@on  angle by  a  point  lens ✓=

Credit:  NASA,  Andrew  Fruchter  and  the  ERO  Team   [Sylvia  BaggeL  (STScI),  Richard  Hook  (ST-­‐ECF),   Zoltan  Levay  (STScI)]  (STScI)

4GN m c 2 rc Credit:  J.  A.  Tyson,  UC  Davis,  LSST

23

image  invisible  dark   maNer

more  than  80%  of  maLer  in  the  Universe  is  not  atoms

24

image  invisible  dark   maNer

more  than  80%  of  maLer  in  the  Universe  is  not  atoms

24

image  invisible  dark   maNer

more  than  80%  of  maLer  in  the  Universe  is  not  atoms

24

4B  lyrs  away

25

Good  not  to  be  here

4B  lyrs  away

25

Good  not  to  be  here

two  clusters  collided  at  4500km/sec 4B  lyrs  away

25

Good  not  to  be  here

two  clusters  collided  at  4500km/sec Credit:  J.  Wise,  M.  Bradac  (Stanford,  KIPAC)

4B  lyrs  away

25

Good  not  to  be  here

two  clusters  collided  at  4500km/sec Credit:  J.  Wise,  M.  Bradac  (Stanford,  KIPAC)

4B  lyrs  away

25

Good  not  to  be  here bullet  cluster

two  clusters  collided  at  4500km/sec Credit:  J.  Wise,  M.  Bradac  (Stanford,  KIPAC)

4B  lyrs  away

25

rs  ly 2B

2B  lyrs

nearly  uniform small  wrinkles

rs  ly 2B Credit:  Sloan  Digital  Sky  Survey

26

10–5 Credit:  NASA

we  wouldn’t  exist without  dark  maNer

without  dark  maLer

with  dark  maLer

27

Reenac@ng  the  Big  Bang  with  Cal  Marching  Band

Nobelist  George  Smoot  Directs  Big  Bang  with  Cal  Band,  12/06 hLp://www.youtube.com/watch?v=OdsWhHWdc1g

28

Reenac@ng  the  Big  Bang  with  Cal  Marching  Band

Credit:  The  Regents  of  the  University  of  California Nobelist  George  Smoot  Directs  Big  Bang  with  Cal  Band,  12/06 hLp://www.youtube.com/watch?v=OdsWhHWdc1g

28

OK,  I  see  dark  maLer  is   important.    What  we   do  know  about  it? 29

Cold  and  Neutral •it must be moving slowly (cold) •it must be electrically neutral •it must be long-lived (at least 13.8Byrs)

30

Dim  Stars? Search  for  MACHOs (Massive  Compact  Halo  Objects) Large  Magellanic  Cloud

Credit:  NASA

31

Dim  Stars? Search  for  MACHOs (Massive  Compact  Halo  Objects) Large  Magellanic  Cloud Credit:  Hubble  Heritage  Team   (AURA/STSCI/NASA)

Credit:  NASA

31

Dim  Stars? Search  for  MACHOs (Massive  Compact  Halo  Objects) Large  Magellanic  Cloud Credit:  Hubble  Heritage  Team   (AURA/STSCI/NASA)

Credit:  NASA

31

Dim  Stars? Search  for  MACHOs (Massive  Compact  Halo  Objects) Large  Magellanic  Cloud Credit:  Hubble  Heritage  Team   (AURA/STSCI/NASA)

Credit:  NASA

Not  enough  of  them!

31

Dim  Stars? 0.6

Search  for  MACHOs (Massive  Compact  Halo  Objects)

EROS  collabora@on astro-­‐ph/0607207 f = T−7

0.4

Large  Magellanic  Cloud

MACHO 95% cl EROS−2 + EROS−1 upper limit (95% cl)

0.2

Credit:  Hubble  Heritage  Team   0.0 (AURA/STSCI/NASA) −8 −6 −4 −2

2 0 logM= 2log( t E /70d)

Credit:  NASA

Not  enough  of  them!

31

Mass  Limits “Uncertainty  Principle” •Clumps to form structure •imagine V = G Mrm •“Bohr radius”: r = G M m •too small m ⇒ won’t “fit” in a galaxy! •m >10 eV “uncertainty principle” N

2

B

N

2

−22

bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

32

Summary Mass  Limits

Fritz  Zwicky Credit:  NASA/CXC/ SAO

33

Summary Mass  Limits • 10

-31

GeV to 1050 GeV

Fritz  Zwicky Credit:  NASA/CXC/ SAO

33

Summary Mass  Limits • 10 GeV to 10 GeV • narrowed it down to -31

50

within 81 orders of magnitude

Fritz  Zwicky Credit:  NASA/CXC/ SAO

33

Summary Mass  Limits • 10 GeV to 10 GeV • narrowed it down to -31

50

within 81 orders of magnitude

• a big progress in 70 years since Zwicky

Fritz  Zwicky Credit:  NASA/CXC/ SAO

33

Self-­‐Coupling

• if self-coupling too big, will •

“smooth out” cuspy profile at the galactic center some people want it (Spergel and Steinhardt, astro-ph/ 9909386)

• need core < 35 kpc/h from data σ < 1.7 x 10-25 cm2 (m/GeV)

(Yoshida, Springel, White, astro-ph/ 0006134)

• bullet cluster:

σ < 1.7x10-24 cm2 (m/GeV) (Markevitch et al, astro-ph/0309303)

34



Self-­‐Coupling if self-coupling too big, will “smooth out” cuspy profile at the galactic center

• some people want it

(Spergel and Steinhardt, astro-ph/ 9909386)

• need core < 35 kpc/h from data σ < 1.7 x 10-25 cm2 (m/GeV)

(Yoshida, Springel, White, astro-ph/ 0006134)

• bullet cluster:

σ < 1.7x10-24 cm2 (m/GeV) (Markevitch et al, astro-ph/0309303)

Yoshida  et  al.,  2000

34

MACHO  ⇒ WIMP

Credit:  NASA

35

MACHO  ⇒ WIMP

Credit:  NASA

35

MACHO  ⇒ WIMP • It is probably WIMP (Weakly Interacting Massive Particle)

• Stable heavy particle produced in early Universe, left-over from near-complete annihilation

• Will focus on WIMPs for the rest or the lecture

Credit:  NASA

35 G. Jungman et al. JPhysics Reports 267 (1996) 195-373

221

Using the above relations (H = 1.66g$‘2T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we find (n&)0 = (n&f

= 1001(m,m~~g~‘2+JA+)

N 10-S/[(m,/GeV)((~A~)/10-27

cm3 s-‘)I,

thermal  relic

(3.3)

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. The current entropy density is so N 4000 cmm3, and the critical density today is pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the present mass density in units of the critical density is given by 0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv))

• • • • • •

.

(3.4)

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is inversely proportional to its annihilation cross section. Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T

thermal equilibrium when kT>mχc2 Once kT<mχc2, no more χ created if stable, only way to lose them is annihilation but universe expands and χ get dilute at some point they can’t find each other their number in comoving volume “frozen”

0 . 01 0 . 001

0 . 0001 10-b

10-s

,h -;

10-7

caJ 10-a

a

10-Q

2 p

lo-‘9

$

lo-”

z

10-m

F!

lo-‘3

10

x=m/T

100

(time

Fig. 4. Comoving number density of a WIMP in the early Universe. the solid curve is the equilibrium abundance. From [31].

+) The dashed

curves are the actual abundance,

and

36

Order  of  magnitude • “Known” Ω =0.23 χ

determines the WIMP annihilation cross section

• simple estimate of

⇤ g⇥

⌅⇤ann v⇧ ⇤

the annihilation cross ⇥ 10 section

• within the range at LHC!!!

1/2

xf s0 MP3 l ⌅⇤ann v⇧ H02

1.12

GeV 2 ⇥ 2 ⌅⇤ann v⇧ ⇤ 2 m m ⇤ 300 GeV 9

10

10

GeV

1/2 g⇥

2

xf

h2

37

Listen  to  faint  sound can’t  hear  faint   sound

38

Listen  to  faint  sound can’t  hear  faint   sound

shut  out  the  noise!

38

Listen  to  faint  sound can’t  hear  faint   sound

shut  out  the  noise!

to  hear  faint  sound  of  dark  maLer ???? go  to  quiet  space=underground

38

Listen  to  faint  sound can’t  hear  faint   sound

shut  out  the  noise!

to  hear  faint  sound  of  dark  maLer go  to  quiet  space=underground

38

39

basic  idea • maximum energy

nucleus

transfer to nucleus when mχ~MA

DM

nucleus

• energy of the nucleus leads to a combination of

• ionization • phonon • scintillation

DM

Ef =

1 m MA m v2 2(1 2 (m + MA )2

ˆ cos ✓)

40 December 24, 2009

2010 Jan 21

Y. Suzuki (IPMU Site Visit) @Kashiwa

25

41

XMASS 1t liquid Xenon in Kamioka mine

42 Rene  Ong

WIMP Direct Detection Limits Spin Independent

Spin Dependent

potential signals

COUPP Xenon100

Super K Super-K

MSSM

IceCube

MSSM

(Potential signals: DAMA/LIBRA, CRESST, CoGeNT – see backup slides)

43 Rene  Ong

WIMP Direct Detection Limits

Exci7ng! Spin Independent

Spin Dependent

potential signals

COUPP Xenon100

Super K Super-K

MSSM

IceCube

MSSM

(Potential signals: DAMA/LIBRA, CRESST, CoGeNT – see backup slides)

43

LHC  E=mc2 Credit:  CERN,  Photograph:  Maximilien  Brice

Can  we  make  dark  maNer? Credit:  CERN

44

• Something is escaping the detector ⇒Dark Matter!?

| 500cm

0

energy and momenta are unbalanced “missing energy” Emiss

Y

• Mimic Big Bang in the lab • Hope to create invisible Dark Matter particles • Look for events where

4.8Gev EC 19.Gev HC

500cm|

Producing  Dark  MaLer   in  the  laboratory

| 500cm YX hist.of BA.+E.C.

0

X

500cm|

Credit:  CERN

45

program

cosmic abundance

of dark matter • cosmological measurement −1 abundance ∝ σ • ann • detection experiments • scattering cross section • production at colliders • mass, couplings • can calculate cross sections • If they agree with each other:

⇒ ⇒

LHC

WMAP

Will know what  Dark  MaHer  is Will understand universe back to t∼10-10 sec

ILC

mass of the Dark Matter

46

yrs

yrs

8B

0k

t ion rill

in

13.

38

3m

1t ec hs

CMB

Higgs

Credit:  C.  Amsler  et  al.    (Par@cle  Data  Group),  Physics  LeLers  B667,  1  (2008)

47

yrs

yrs

8B

0k

in

13.

38

3m

sec nth llio -bi ten sec th ion rill

1t

Higgs DM

CMB

Credit:  C.  Amsler  et  al.    (Par@cle  Data  Group),  Physics  LeLers  B667,  1  (2008)

47

Neutrinos  and an@-­‐maLer

48

Credit:  NASA

49

Credit:  NASA

49

An@-­‐MaLer •for every particle, there is an antiparticle

•same mass, same lifetime •opposite electric charge •electron e and positron e_ •proton p and anti-proton p _ •neutron n and anti-neutron n –

+

50

51

1933 first  humanmade  an@-­‐maLer

51

γ photon 1933 first  humanmade  an@-­‐maLer

51

e− electron

γ photon 1933 first  humanmade  an@-­‐maLer

51

e− electron

e+ positron

γ photon 1933 first  humanmade  an@-­‐maLer

51

e− electron

Irène

e+ positron

γ photon Frédéric   Joliot-­‐Curie

1933 first  humanmade  an@-­‐maLer

51

Berkeley

Credit:  ©  2010  The  Regents  of  the  University  of  California,  Lawrence  Berkeley  Na@onal  Laboratory

52

Berkeley

1955 an@-­‐proton

maLer  and  an@-­‐ maLer  annihilate   into  pure  energy Credit:  ©  2010  The  Regents  of  the  University  of  California,  Lawrence  Berkeley  Na@onal  Laboratory

52

Berkeley

1955 an@-­‐proton

Emilio Owen Segrè Chamberlain maLer  and  an@-­‐ maLer  annihilate   into  pure  energy Credit:  ©  2010  The  Regents  of  the  University  of  California,  Lawrence  Berkeley  Na@onal  Laboratory

Credit:  CERN

\–CM :$&#IMP



8

CM\

'EV%# 'EV(#

Q

52

53

98HISTOF"! %# \–CM



9

CM\

an@-­‐maLer  at  use

Positron  Emission  Tomography  (PET)

Typical  PET  Facility

54

Credit:  NIDA,  NIH

55

56

Credit:  Positronics  Research,  LLC

56

Credit:  Positronics  Research,  LLC

E=mc2 300  million  @mes  more  efficient   than  regular  gasoline

56

Energy  sources •eV=1.6×10 J •for each proton m c =0.938GeV •chemical reaction ~eV •nuclear fission ~MeV •nuclear fusion ~10MeV •anti-matter (proton on anti-proton) –19

p

2

~GeV

57

58

• European Laboratory CERN

• A scientist produced

a quarter gram of anti-matter without the knowledge of the Director General

• falls into wrong hands!

58

• European Laboratory CERN

• A scientist produced

a quarter gram of anti-matter without the knowledge of the Director General

• falls into wrong hands!

billion  trillion   trillion  dollars

58

• European Laboratory CERN

• A scientist produced

a quarter gram of anti-matter without the knowledge of the Director General

• falls into wrong hands!

billion  trillion   trillion  dollars

58

Early  Universe 1,000,000,002

1,000,000,000

matter

anti-matter 59

Current  Universe 2 us

anti-matter

matter

We  won!    But  why?

60

Beginning  of  Universe 1,000,000,001

1,000,000,001

anti-matter

matter

61

frac@on  of  second  later 1 1,000,000,002

matter

1,000,000,000

anti-matter

turned  a  billionth  of  an@-­‐maLer  to  maLer

62

Universe  Now 2 us

matter

anti-matter

This  must  be  how  we  survived  the  Big  Bang!

63

Life  or  Death

64

Life  or  Death • Is the world of anti-matter the exact mirror of the world of matter?

64

Life  or  Death • Is the world of anti-matter the exact mirror of the world of matter? • If so, there is no reason for matter to be chosen

64

Life  or  Death • Is the world of anti-matter the exact mirror of the world of matter? • If so, there is no reason for matter to be chosen • It shouldn’t be an exact mirror. There must be some subtle difference!

64

Life  or  Death • Is the world of anti-matter the exact mirror of the world of matter? • If so, there is no reason for matter to be chosen • It shouldn’t be an exact mirror. There must be some subtle difference! • How can such a difference be explained? 64

Life  or  Death • Is the world of anti-matter the exact mirror of the world of matter? • If so, there is no reason for matter to be chosen • It shouldn’t be an exact mirror. There must be some subtle difference! • How can such a difference be explained? • A bold 1973 theory by Kobayashi and Maskawa (2008 Nobel prize in physics)

64

Elementary  Par@cles Credit:  Marekich,  CC  BY-­‐SA  3.0

nuclei

atoms

protons

neutrons

quarks

Credit:  NASA

65

Elementary  Par@cles Credit:  Marekich,  CC  BY-­‐SA  3.0

nuclei

atoms

protons

neutrons

quarks down

Credit:  NASA

up

65

Elementary  Par@cles Credit:  Marekich,  CC  BY-­‐SA  3.0

nuclei

atoms

protons

neutrons

quarks down

Credit:  NASA

electron

down

up

up

65

Elementary  Par@cles Credit:  Marekich,  CC  BY-­‐SA  3.0

nuclei

atoms

protons

neutrons

quarks down

Credit:  NASA

muon

electron

down

up

up

65

Elementary  Par@cles Credit:  Marekich,  CC  BY-­‐SA  3.0

nuclei

atoms

protons Who  ordered  that?? muon I.I.  Rabi electron down

neutrons

quarks down

Credit:  NASA

up

up

65

Muons

66

Muons

Muons  come  from  outer  space. About  a  thousand  of  them  go  through   our  body  every  minute  like  X-­‐ray.

66 Science  167,    832  (1970)

Credit:  Ricardo  Liberato,  CC  BY-­‐SA  3.0

Search for Hidden Chambers in the Pyramids The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption Luis  W.  Alvarez,  Jared  A.  Anderson,  F.  El  Bedwei,  James  Burkhard,   Ahmed  Fakhry,  Adib  Girgis,  Amr  Goneid,  Fikhry  Hassan,  Dennis  Iverson,   Gerald  Lynch,  Zenab  Miligy,  Ali  Hilmy  Moussa,  Mohammed  Sharkawi,   Lauren  Yazolino

67 Science  167,    832  (1970)

Credit:  Ricardo  Liberato,  CC  BY-­‐SA  3.0

Search for Hidden Chambers in the Pyramids The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption Luis  W.  Alvarez,  Jared  A.  Anderson,  F.  El  Bedwei,  James  Burkhard,   Ahmed  Fakhry,  Adib  Girgis,  Amr  Goneid,  Fikhry  Hassan,  Dennis  Iverson,   Gerald  Lynch,  Zenab  Miligy,  Ali  Hilmy  Moussa,  Mohammed  Sharkawi,   Lauren  Yazolino

67

Credit:  Ricardo  Liberato,  CC  BY-­‐SA  3.0

Science  167,    832  (1970) Search for Hidden Chambers in the Pyramids The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption Luis  W.  Alvarez,  Jared  A.  Anderson,  F.  El  Bedwei,  James  Burkhard,   Ahmed  Fakhry,  Adib  Girgis,  Amr  Goneid,  Fikhry  Hassan,  Dennis  Iverson,   Gerald  Lynch,  Zenab  Miligy,  Ali  Hilmy  Moussa,  Mohammed  Sharkawi,   Lauren  Yazolino

hidden   chamber   with   treasures?

67 Credit:  Ricardo  Liberato,  CC  BY-­‐SA  3.0

Science  167,    832  (1970) Search for Hidden Chambers in the Pyramids The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption Luis  W.  Alvarez,  Jared  A.  Anderson,  F.  El  Bedwei,  James  Burkhard,   Ahmed  Fakhry,  Adib  Girgis,  Amr  Goneid,  Fikhry  Hassan,  Dennis  Iverson,   Gerald  Lynch,  Zenab  Miligy,  Ali  Hilmy  Moussa,  Mohammed  Sharkawi,   Lauren  Yazolino

hidden   chamber   with   treasures?

67 Credit:  Ricardo  Liberato,  CC  BY-­‐SA  3.0

Science  167,    832  (1970) Search for Hidden Chambers in the Pyramids The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption Luis  W.  Alvarez,  Jared  A.  Anderson,  F.  El  Bedwei,  James  Burkhard,   Ahmed  Fakhry,  Adib  Girgis,  Amr  Goneid,  Fikhry  Hassan,  Dennis  Iverson,   Gerald  Lynch,  Zenab  Miligy,  Ali  Hilmy  Moussa,  Mohammed  Sharkawi,   Lauren  Yazolino

hidden   chamber   with   treasures?

No  hidden   chamber!



67

see  through  a  volcano use cosmic ray muons to see the inside of a volcano

•can locate magma •demonstrated by

Earthquake Research Institute, Univ. of Tokyo

•useful for

predicting eruption

Credit:  ©  Center  for  High  Energy  Geophysics  Research,   Earthquake  Research  Ins@tute,  University  of  Tokyo

68



see  through  a  volcano use cosmic ray muons to see the inside of a volcano

•can locate magma •demonstrated by

Earthquake Research Institute, Univ. of Tokyo

•useful for

predicting eruption

Credit:  ©  Center  for  High  Energy  Geophysics  Research,   Earthquake  Research  Ins@tute,  University  of  Tokyo

68

69 Luis  Walter  Alvarez

69

Elementary  Par@cles

muon electron

down

up

70

Elementary  Par@cles

muon

strange 

electron

down

up

70

Elementary  Par@cles

Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

There  must  be   three  of  each  type muon

strange 

electron

down

up

70

Elementary  Par@cles

Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

There  must  be   three  of  each  type muon

strange 

electron

down

charm

1974

up

70

Elementary  Par@cles

Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

There  must  be   tau of  e1975 three   ach  type muon electron

strange  down

charm

1974

up

70

Elementary  Par@cles

Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

There  must  be   bottom tau of  e1975 three   ach  type muon

1978

strange 

electron

charm

down

1974

up

70

Elementary  Par@cles top

1995

Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

There  must  be   bottom tau of  e1975 three   ach  type muon electron

strange  down

1978

charm

1974

up

70

Why  three?

71

Why  three? • essential difference

between two and three

71

Why  three? • essential difference between two and three • connect the dots

71

Why  three? • essential difference between two and three • connect the dots

71

Why  three? • essential difference between two and three • connect the dots

71

Why  three? • essential difference between two and three • connect the dots

71

Why  three? • essential difference between two and three • connect the dots

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter

correspond to reflection

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter

correspond to reflection

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter correspond to reflection • can make a difference!

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter correspond to reflection • can make a difference!

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter correspond to reflection • can make a difference!

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter correspond to reflection • can make a difference!

71

Why  three? • essential difference between two and three • connect the dots • three or more leads to polygons • matter and anti-matter correspond to reflection • can make a difference! • but with two dots, a polygon collapses

71

Major  experiments

Credit:  SLAC  Na@onal  Accelerator  Laboratory

72

Major  experiments

•Head-to-head competition between

Stanford/Berkeley and KEK (Japan)

Credit:  SLAC  Na@onal  Accelerator  Laboratory

72

Major  experiments

•Head-to-head competition between

Stanford/Berkeley and KEK (Japan)



Credit:  SLAC  Na@onal  Accelerator  Laboratory

Super high-tech machine with micron precision over 4 miles and colliding beams every 4 nanoseconds at speed of light

72

Credit:  ©  2009  The  Regents  of  the  University  of  California

73

Credit:  ©  2009  The  Regents  of  the  University  of  California

73

Difference  between maLer  and  an@-­‐maLer

74

Difference  between maLer  and  an@-­‐maLer

• Three found as they predicted

74

Difference  between maLer  and  an@-­‐maLer

• Three found as they predicted

• Then there must be

some difference between matter and anti-matter!

74

Difference  between maLer  and  an@-­‐maLer

• Three found as they predicted

• Then there must be

some difference between matter and anti-matter!

• Experiments at

Stanford and KEK confirmed their prediction precisely since 2002

74

• Three found as they predicted

• Then there must be

some difference between matter and anti-matter!

• Experiments at

Stanford and KEK confirmed their prediction precisely since 2002

Asymmetry Entries / 0.5 ps

Difference  between maLer  and  an@-­‐maLer

Belle

0

0

400 (d) B m J/YK 300 200 B0 100 0

_ B0

q=+1 q= 1

0.5 0

-0.5 -7.5 -5 -2.5

0

2.5

-X f $t(ps)

5

7.5

74

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

75

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

•We could explain the subtle difference

between matter and anti-matter thanks to Kobayashi and Maskawa

75

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

•We could explain the subtle difference •

between matter and anti-matter thanks to Kobayashi and Maskawa Can we then explain the difference of one part in billion in our Universe?

75

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

•We could explain the subtle difference • •

between matter and anti-matter thanks to Kobayashi and Maskawa Can we then explain the difference of one part in billion in our Universe? We can only explain 10–26!

75

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

•We could explain the subtle difference • • •

between matter and anti-matter thanks to Kobayashi and Maskawa Can we then explain the difference of one part in billion in our Universe? We can only explain 10–26! more differences are needed

75

New  Puzzle Credit:  NIMSoffice,  CC  BY-­‐SA  3.0

•We could explain the subtle difference • • • •

between matter and anti-matter thanks to Kobayashi and Maskawa Can we then explain the difference of one part in billion in our Universe? We can only explain 10–26! more differences are needed we also need to see how anti-matter can turn into matter

75

New  Paradigm •Maybe neutrinos could reshuffle the

balance between matter and anti-matter

•Possible if neutrino can morph into antineutrino and back

•Then we owe our existence to neutrinos!

76

New  Paradigm •Maybe neutrinos could reshuffle the

balance between matter and anti-matter

•Possible if neutrino can morph into antineutrino and back

•Then we owe our existence to neutrinos! Fukugita Yanagida

76

Neutrinos  morph KamLAND

1kt

uses  mineral  oil (liquid  scin@llator) instead  of  water

Credit:  KamLAND  collabora@on

77

78

• • •

Credit:  KamLAND   collabora@on

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2

Survival Probability

Neutrinos  morph There are three types of neutrinos (electron, muon, tau) one species changes into another neutrinos oscillate

1 0.8 ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.6 0.4 0.2 0 10

-3

10

-2

10

-1

10

1

20

30

40

50

60

70

80

L 0/E (km/MeV)

79

Neutrinos  morph

• There are three types of neutrinos (electron, muon, tau) • one species changes into another • neutrinos oscillate

1 0.8 ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.6 0.4

0 10

-3

10

-2

10

h

0.2

p mor

Survival Probability

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2

Credit:  KamLAND   collabora@on

-1

10

1

20

30

40

50

60

70

80

L 0/E (km/MeV)

79

Neutrinos  morph

• There are three types of neutrinos (electron, muon, tau) • one species changes into another • neutrinos oscillate

1 0.8

0.2 0 10

-3

10

-2

10

-1

ba ck

0.4

h

ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.6

p mor

Survival Probability

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2

Credit:  KamLAND   collabora@on

1

10

20

30

40

50

60

70

80

L 0/E (km/MeV)

79

Neutrinos  morph

• There are three types of neutrinos (electron, muon, tau) • one species changes into another • neutrinos oscillate

1 0.8 ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.4

0 10

-3

10

-2

10

h

0.2

m or ph

ba ck

0.6

p mor

Survival Probability

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2

Credit:  KamLAND   collabora@on

-1

10

1

20

30

40

50

60

70

80

L 0/E (km/MeV)

79

• • •

Credit:  KamLAND   collabora@on

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2 1

0 10

-3

10

-2

10

ck

h

0.2

m or ph

ba

0.4

-1

10

1

20

30

40

ba

ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.6

ck

0.8

p mor

Survival Probability

Neutrinos  morph There are three types of neutrinos (electron, muon, tau) one species changes into another neutrinos oscillate

50

60

70

80

L 0/E (km/MeV)

79

Neutrinos  morph

• There are three types of neutrinos (electron, muon, tau) • one species changes into another • neutrinos oscillate

1

0.2 0 10

-3

10

-2

10

-1

m or ph

ba ck

0.4

h

ILL Goesgen Savannah River Palo Verde CHOOZ Bugey Rovno Krasnoyarsk

0.6

1

10

20

30

40

ba ck

0.8

p mor

Survival Probability

KamLAND data Neutrino oscillation with real reactor distribution

previous reactor experiments

1.2

Credit:  KamLAND   collabora@on

50

60

70

80

L 0/E (km/MeV)

79

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

80

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

80

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

80

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

80

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

80

Turn  an@-­‐maLer into  maLer

• Can anti-matter turn into matter?

• Maybe anti-neutrino can

turn into neutrino because they don’t carry electricity

• 0νββ:  nn→ppe–e– with no neutrinos

• can happen only once 10

24

(trillion trillion) years

paLence!

80

Need  big  underground experiments • look for 136 Xe ! 136 Ba e • dissolve gaseous xenon

e

into liquid scintillator

• current 100kg of enriched xenon

• so far only upper25limit

⌧1/2 > 3.4 ⇥ 10 years

KamLAND=1000t

Credit:  KamLAND  collabora@on

81

Need  big  underground experiments • look for 136 Xe ! 136 Ba e • dissolve gaseous xenon

e

into liquid scintillator

• current 100kg of enriched xenon

• so far only upper25limit

⌧1/2 > 3.4 ⇥ 10 years

KamLAND=1000t

Credit:  KamLAND  collabora@on

81

look  for  difference   _ between  ν  and  ν T2K

compare P (⌫µ ! ⌫e ) and P (¯⌫µ ! ⌫¯e )

82

1300km!

83

yrs

rs

ky

8B

13.

380

in 3m

ec th s lion -bil sec ten nth illio

1 tr

Higgs

CMB

DM

Credit:  C.  Amsler  et  al.    (Par@cle  Data  Group),  Physics  LeLers  B667,  1  (2008)

84

8B

13. yrs

rs

ky

DM

380

10

in 3m

ec th s lion -bil sec ten nth illio nds eco -26 s 1 tr

Higgs an7-­‐maNer!

CMB

Credit:  C.  Amsler  et  al.    (Par@cle  Data  Group),  Physics  LeLers  B667,  1  (2008)

84