From the Big Bang to Dark Energy

Report 8 Downloads 65 Views
From  the  Big  Bang to  Dark  Energy Hitoshi Murayama Kavli IPMU, University of Tokyo UC Berkeley, Lawrence Berkeley Laboratory

1 Credit:(NASA(

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2 Credit:(NASA(

How did the Universe begin?

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2 Credit:(NASA(

How did the Universe begin? What is its fate?

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2

Credit:(NASA(

How did the Universe begin? What is its fate? What is it made of?

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2 Credit:(NASA(

How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws?

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2 Credit:(NASA(

How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws? Where do we come from?

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2 Credit:(NASA(

How did the Universe begin? What is its fate? What is it made of? What are its fundamental laws? Where do we come from? Now in the realm of science!

Credit:(aNGeLic!(by(Rolfe(Kolbe( CC  BY  2.0 h7p://www.flickr.com/photos/46210293@N08/8287418426/(

2

Outline 1. From daily life to the Big Bang 2. Birth of elements and Higgs boson 3. Dark matter and anti-matter 4. Inflation and Dark energy

3

1.  From  daily  life to  the  Big  Bang

4

familiar phenomena

Credit:(NASA(

5

familiar phenomena

cause

Credit:(NASA(

5

Universe familiar phenomena

cause parBcles

Credit:(NASA(

5

Night  and  Day

6

Credit:  NASA

7

Many  phenomena  we   take  for  granted   require  thinking  about   outer  space 8

9

Four  Seasons

10

Credit:  NASA

11

Tokyo%(northern%hemi)%

Sydney%(southern%hemi)%

Tokyo%(northern%hemi)

Sydney%(southern%hemi)

35%

30% 31% 28%

25%

23%

20%

18%

15% 10%

12% 9% 9%

5% 2%

22% 18%

14% 10%

24%

20% 20%

21%

14%

15%

16%

25%

25%

24%

10%

9% 4%

Average%Low%

19% 19%

20% 18%

23%

20% 17% 17%

18%

18% 16%

15%

14%

13% 12%

4%

Average%High%

26% 26%

22%

Jan% Feb% Mar% Apr% May% Jun% Jul% Aug% Sep% Oct% Nov% Dec%

0%

1%

25%

25% 27%

11% 9%

8%

9%

5% 0%

Jan% Feb% Mar% Apr% May% Jun% Jul% Aug% Sep% Oct% Nov% Dec%

30%

Average%High%

Average%Low%

12

Sun Sun

cos 0∘=1 at  an  angle,  the  same  area  received  less  sun  light

cos 60∘=1/2

13

Credit:  NASA

If#true,#there#must#be#two#summers#at#the#equator#

14

Nairobi# 30# 27# 27# 25# 25#

25#

25# 23#

26# 24# 24#

22# 22# 22#

20#

15#

10# 10#

11#

12#

13#

12# 10#

11#

12# 12#

9# 9# 9#

Credit: Mandingoesque, CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Kenya_(orthographic_projection).svg

Average#High#

Oct#

Dec#

Sep#

Nov#

Jul#

Aug#

Jun#

Apr#

May#

Jan#

Feb#

0#

Mar#

5#

Average#Low#

15

RevoluBon  of  the  Earth

16

We  are  here

Aristotle

17

this  is  why  the  word  “planet”  means  “wandering  star”

18 Epicycles Ptolemy

19 Epicycles Ptolemy

Complex explanaBon!

19

You  are  here

8 light minutes

Copernicus

20 You  are  here

8 light minutes

Copernicus

Simple,  but   doesn’t  agree   with   observaBons

20 Kepler

Credit:(NASA(

ellipBcal orbits single  concept  explains  them  all!

21

criteria  for a  good  physical  theory

22

criteria  for a  good  physical  theory •agree with observations/experiments

22

criteria  for a  good  physical  theory •agree with observations/experiments •unified description

22

criteria  for a  good  physical  theory •agree with observations/experiments •unified description •simple 22

why  ellipBc?

23

universal  gravitaBon

F =G

Mm r2 24

descendant  of  Newton’s  apple  tree

Univ.  of  Tokyo,  Koishikawa  botanical  garden

25

F=ma mass =how difficult it is to change the motion

26

Which  one  is  easier  to  move   with  the  same  force?

F=ma 27

Credit:  Gonfer,  CC  BY-­‐SA  3.0 hZp://commons.wikimedia.org/wiki/File:Kepler-­‐second-­‐law.gif

F=ma

F =

G

Mm R2

28

solar system

Credit:  NASA/JPL

29

solar system

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

29

solar system

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

29

solar system

1 v/ p r

Credit:  NASA/JPL

Earth  revolves  around  the  Sun  at  30  km/s

29

rotaBon  speed • approximately circular F = 2 • centrifugal force F = mvr mv 2 Mm =G 2 r r r GM • orbital speed v = r

G

Mm r2

1 v/ p r

• outer planets are moving more slowly

• inner planets are faster 30

why  does  everything fall  the  same  way?

31

32

32

why  fall  the  same  way? • heavier objects are hard to move ⇒ slow F=ma • gravity is stronger on heavier objects ⇒fast Mm F = G 2 • they exactly cancel R • the answer doesn’t depend on ma = G M R2 • doesn’t sound very convincing

33

space  warps • gravity is a property of space • space warps • everything is going “straight”, but ends up curving because space is warped

• then it is easy to understand why everything moves the same way!

Credit:  AllenMcC,  CC  BY-­‐SA  3.0 hZp://commons.wikimedia.org/wiki/File:Flamm.jpg

general  relaBvity

34

35

Black  Hole • so heavy that even light can’t escape its gravity

• there are many in the Universe • heavy stars collapse to black holes at the end of their lives

• supermassive blackholes at the center of galaxies

Credit:  AllenMcC,  CC  BY-­‐SA  3.0 hZp://commons.wikimedia.org/wiki/File:Flamm.jpg

36

escape  velocity 1 mv 2 2 2GM v2 = R

E=

G

Mm =0 R

can’t  escape  if  v=c c2 =

2GMBH R

Credit:  AllenMcC,  CC  BY-­‐SA  3.0 hZp://commons.wikimedia.org/wiki/File:Flamm.jpg

radius  of  the  blackhole  (Schwarzschild  radius) R=

2GMBH c2

R=2.95km  for  solar  mass

strictly  speaking,  this  Newtonian  derivaBon  is  not  correct needs  to  rely  on  general  relaBvity,  but  the  answer  is  right

37

beginning  of  the  Universe look  far  into  the  past

38

Credit:  NASA

39

alBtude:  375  km Credit:  NASA

39

Credit:  NASA

alBtude:  375  km skin  of  a  peach

39 Kaguya Sep  30,  2008

Credit:  JAXA/NHK

40 Kaguya Sep  30,  2008

380,000km =1.3  light  seconds

Credit:  JAXA/NHK

40

380,000km =1.3  light  seconds

Credit:  JAXA/NHK

41

Credit:  NASA

42

1.5  108  km =8.3  light  min

Credit:  NASA

42

solar  system

Credit:  NASA/JPL

43

solar  system

Credit:  NASA/JPL

43

solar  system Hayabusa=20  light  min

Credit:  NASA/JPL

43 Neptune 4  light  hours

solar  system

Hayabusa=20  light  min

Credit:  NASA/JPL

43 Neptune 4  light  hours

solar  system

Credit:  NASA

Voyager 16  light   hours

Hayabusa=20  light  min

Credit:  NASA/JPL

43

closest  star

44

closest  star

44

closest  star

Proxima  Centauri 4.2  lyr

44

Credit:  ESO/A.  Fitzsimmons,  CC  BY-­‐SA  3.0

45

Credit:  NASA

46 a  hundred  billion   stars

Credit:  NASA

47 a  hundred  billion   stars

28,000  lyrs

Credit:  NASA

47

a  hundred  billion   stars yrs 00  l 0 , 8 2

150

rs 0 ly

Credit:  Jschulman555 hZp://commons.wikimedia.org/wiki/File:NGC_4565_and_4562.jpg

48

28,000 lyrs

Credit:  NASA

49

solar  system  revolves  at  220  km/s what  is  pulling  us  inside?

28,000 lyrs

Credit:  NASA

49

center  of  Milky  Way

Credit:  ESO/S.  Gillessen  and  B.  Gilli,  CC  BY-­‐SA  3.0

50

Credit:  ESO,  CC  BY-­‐SA  3.0

51

Black  Hole

Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million

times solar mass at the center of Milky Way

Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million •

times solar mass at the center of Milky Way other galaxies have even heavier ones

Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million • •

times solar mass at the center of Milky Way other galaxies have even heavier ones literally swallow gas around it

Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million • • •

times solar mass at the center of Milky Way other galaxies have even heavier ones literally swallow gas around it their “last word” is the light

Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million • • • •

times solar mass at the center of Milky Way other galaxies have even heavier ones literally swallow gas around it their “last word” is the light but no comparison to the mass of all stars combined Credit:  ESO,  CC  BY-­‐SA  3.0

52

Black  Hole • a supermassive blackhole of 4 million • • • • •

times solar mass at the center of Milky Way other galaxies have even heavier ones literally swallow gas around it their “last word” is the light but no comparison to the mass of all stars combined can’t help keep the solar system in Credit:  ESO,  CC  BY-­‐SA  3.0

52

Andromeda=2.5M  lyr  away also  dark  maZer  important Credit:  NASA

53

will  collide  with  us  in  4.5Byrs

Andromeda=2.5M  lyr  away also  dark  maZer  important Credit:  NASA

53

will  collide  with  us  in  4.5Byrs

Andromeda=2.5M  lyr  away also  dark  maZer  important Credit:  NASA

53

Local Group >40 galaxies

Credit:  Selbst  erstelltes  Diagramm  aus  Rohdaten  von  CWiZe  und  daher  gemeinfrei.,  CC   BY-­‐SA  3.0  hZp://commons.wikimedia.org/wiki/File:Local_Group_Diagram_750px.png

54

Local Group >40 galaxies

4.5B years?

Credit:  Selbst  erstelltes  Diagramm  aus  Rohdaten  von  CWiZe  und  daher  gemeinfrei.,  CC   BY-­‐SA  3.0  hZp://commons.wikimedia.org/wiki/File:Local_Group_Diagram_750px.png

54

Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA

Credit:  NASA,  ESA,  and  the  Hubble  Heritage  Team  (STScI/AURA)

55 Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA

Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA

Credit:  NASA,  ESA,  and  the  Hubble  Heritage  Team  (STScI/AURA)

55 Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA Credit:  NASA,  ESA,  and  the  Hubble  Heritage   Team  (STScI/AURA)-­‐ESA/Hubble  CollaboraBon

Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA

Credit:  NASA,  ESA,  and  the  Hubble  Heritage  Team  (STScI/AURA)

55 Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA Credit:  NASA,  ESA,  and  the  Hubble  Heritage   Team  (STScI/AURA)-­‐ESA/Hubble  CollaboraBon

Credit:  NASA,  H.  Ford  (JHU),  G.  Illingworth  (UCSC/LO),  M.Clampin   (STScI),  G.  HarBg  (STScI),  the  ACS  Science  Team,  and  ESA

Credit:  NASA,  ESA,  and  the  Hubble  Heritage  Team  (STScI/AURA)

mergers   rejuvenate   galaxies

55

Credit:  ESA/Hubble  and  NASA

56

Credit:  Vicent  Peris,  CC  BY-­‐SA  2.0 hZp://commons.wikimedia.org/wiki/File:NGC_7331_-­‐_Peris.jpg

57

Credit:  Vicent  Peris,  CC  BY-­‐SA  2.0 hZp://commons.wikimedia.org/wiki/File:NGC_7331_-­‐_Peris.jpg

57

true  nature  of  galaxies 100k  lyrs stars

dark  maZer

>M  lyrs

58

cluster  of  galaxies

Credit:  Andrew  Fruchter  (STScI)  et  al.,  WFPC2,  HST,  NASA

Abell  2218 2.1B  lyrs

59

Credit:  Sloan  Digital  Sky  Survey

flying  through  the  3d  map  of  galaxies  based  on  data

60

rs  ly 2B 2B  lyrs

nearly  uniform small  wrinkles

rs  ly 2B Credit:  Sloan  Digital  Sky  Survey

61

Credit:  NASA,  ESA,  S.  Beckwith  (STScI)  and  the  HUDF  Team

62

a  galaxy  >13B  lyrs  away?

Credit:  NASA,  ESA,  S.  Beckwith  (STScI)  and  the  HUDF  Team

62

Credit:  NASA,  ESA,  S.  Beckwith  (STScI)  and  the  HUDF  Team

63

Credit:  NASA,  ESA,  S.  Beckwith  (STScI)  and  the  HUDF  Team

63

Credit:  NASA/ESA/STScI/JHU

64

Credit:  NASA/ESA/STScI/JHU

64

Credit:  NASA/ESA/STScI/JHU

64

a  galaxy  13.3B  lyrs  away Credit:  NASA/ESA/STScI/JHU

64

dark  ages 13.6B  lyrs

65

Universe  is  expanding • distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red color

66

Universe  is  expanding • distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red color

66

Universe  is  expanding Q Q Q &c Q

• distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red color

66

Universe  is  expanding Q Q Q &c Q

• distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red color

&c q Q q Q

66

Universe  is  expanding Q Q Q &c Q

• distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red

&c q Q q Q

color

66

Universe  is  expanding Q Q Q &c Q

• distant stars and

galaxies appear red

• approaching: high pitch

• receding: low pitch • receding stars: red

&c q Q q Q

color

66

Doppler  effect • you may know two formulae for sounds

f0 =

V f V +v

f0 =

V

v V

f

67

Doppler  effect • you may know two formulae for sounds

• Einstein’s relativity gives their geometric mean

f0 =

V f V +v

f0 =

V

f0 =

r

v V

f

V v f V +v

67

Doppler  effect f0 =

V f V +v

f0 =

V

• you may know two formulae for sounds



Einstein’s relativity gives their geometric mean

• for slow speed

f0 =

r

v V

V

f

v

f

(v/c