Trigonometry: PolarEquations: anIntroduction by: javier

Report 4 Downloads 43 Views
Trigonometry: Polar Equations: an Introduction

by: javier

Polar Equation the difference

the difference

the Cartesian approach to coordinates

the difference

y

(3, 4)

x

the difference

11

12 y

1 5

10

(3, 4) (5, 1 : 05 o′ clock) 2

9

x 4

8 5

7 6

3

the difference

105 120◦ 135◦ 150◦

◦ y90◦

75◦

(3, 4) 60◦

(5, 52o )

45◦ 30◦

165◦

15◦

180◦

0◦ 1 2 3 4 5x 345◦

195◦

330◦ 210◦ ◦ 225 315◦ ◦ ◦ 300 240 255◦ 270◦ 285◦

the difference

y

(x, y) (r, θ) r θ x

y

x

potting points on Polar Equations graph r = 5 cos(θ)

potting points on Polar Equations graph r = 5 cos(θ) θ

r

0 15 30 45 60 75 90 120 150 180

5.0 4.8 4.3 3.5 2.5 1.3 0.0 -2.5 -4.3 -5.0

120◦

◦ 105◦ 90 75◦

135◦

60◦

45◦

150◦

30◦ 15◦

165◦ 180◦

1 2 3 4 5 6 7

195◦

345◦

330◦

210◦ 225◦ 240◦

0◦

315◦

255◦ 270◦ 285◦

300◦

potting points on Polar Equations r = 3 + 5 sin(θ)

potting points on Polar Equations r = 3 + 5 sin(θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

plot by thinking, finding max and min r values r = 5 sin(2θ)

plot by thinking, finding max and min r values r = 5 sin(2θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

plot by thinking, finding max and min r values r = 5 cos(3θ)

plot by thinking, finding max and min r values r = 5 cos(3θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

plot by thinking, finding max and min r values r = 10 sin(5θ)

plot by thinking, finding max and min r values r = 10 sin(5θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

graph by converting to cartesian r = 10 sin(θ)

graph by converting to cartesian r = 10 sin(θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

graph by machine

graph r2 = 4 cos(2x) polar sage

graphing Polar Equations find start and end of a portion of graph

find start and end of a portion of graph r = 7 sin(3θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

find start and end of a portion of graph r = 3 + 7 cos(θ) 120◦

90◦

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

find start and end of a portion of graph Determine the area that lies inside r = 5 − 3 cos(θ) and outside r = 4 ◦ 120◦

90

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦

find start and end of a portion of graph Determine the area that lies inside r = 5 − 3 cos(θ) and outside r = 4 ◦ 120◦

90

60◦

150◦

30◦

0◦

180◦

330◦

210◦ 240◦

270◦

300◦