Value labels

Report 3 Downloads 109 Views
1

Multiple Imputation for Missing Data

Any specific imputed values for missingness represent one set of an infinite number of plausible values that may have been imputed. 1. Determine prediction equation for imputation of missingness (e.g., Yˆ  a  b1 X1  b2 X 2  e ). 2. Consider sampling error of the bi in this equation and select another set of plausible bi (call this set of regression slopes bi* ). 3. Use the bi* to make a second prediction of each missing value. 4. Repeat steps 2 & 3 several more times, each imputation yielding a separate “complete” set of data. 5. Analyze each complete set of data and average the results (e.g., compute mean regression weight, mean structure coefficient, etc.). 6. Consider variability in these summary statistics across the multiple imputations (imputation error). Total error  T2  = average estimation error  E2  + imputation error  I2 

2

data one; input Y X1 X2; cards; 44.609 11.37 178 45.313 10.07 185 54.297 8.65 156 59.571 . . 49.874 9.22 . 44.811 11.63 176 . 11.95 176 . . . 46.672 10.00 . 46.774 10.25 . 50.388 10.08 168 39.407 12.63 174 46.080 11.17 156 45.441 9.63 164 . 8.92 . 47.920 11.50 170 47.467 10.50 170 ; proc mi data=one out=imputed; proc print data=imputed; title 'Contents of Data = IMPUTED'; proc reg data=imputed outest=outreg covout noprint; model Y = X1 X2; by _Imputation_; proc print data=outreg; title ‘Output from PROC REG’; proc mianalyze data=outreg; modeleffects Intercept x1 x2; run;

3

Contents of Data = IMPUTED Obs 1 2 3 4

_Imputation_ 1 1 1 1

Y 44.6090 45.3130 54.2970 59.5710

X1

X2

11.3700 10.0700 8.6500 6.3158

178.000 185.000 156.000 179.597

32 33 34 35

2 2 2 2

44.6090 45.3130 54.2970 59.5710

11.3700 10.0700 8.6500 8.0906

178.000 185.000 156.000 165.939

63 64 65 66

3 3 3 3

44.6090 45.3130 54.2970 59.5710

11.3700 10.0700 8.6500 8.5059

178.000 185.000 156.000 169.985

94 95 96 97

4 4 4 4

44.6090 45.3130 54.2970 59.5710

11.3700 10.0700 8.6500 6.6947

178.000 185.000 156.000 162.824

125 126 127 128

5 5 5 5

44.6090 45.3130 54.2970 59.5710

11.3700 10.0700 8.6500 7.8401

178.000 185.000 156.000 170.157

4

Output from PROC REG Obs

_Imputation_

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

_MODEL_ MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1 MODEL1

_TYPE_ PARMS COV COV COV PARMS COV COV COV PARMS COV COV COV PARMS COV COV COV PARMS COV COV COV

_NAME_

Intercept X1 X2 Intercept X1 X2 Intercept X1 X2 Intercept X1 X2 Intercept X1 X2

_DEPVAR_ Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

_RMSE_

Intercept

2.39810 2.39810 2.39810 2.39810 2.63360 2.63360 2.63360 2.63360 3.04577 3.04577 3.04577 3.04577 2.70800 2.70800 2.70800 2.70800 2.56819 2.56819 2.56819 2.56819

91.205 59.352 -0.882 -0.287 92.592 78.500 -0.715 -0.408 89.279 108.706 -0.844 -0.578 92.192 82.212 -0.214 -0.467 92.144 45.612 -0.997 -0.201

X1

X2

-3.04859 -0.88152 0.08155 0.00015 -3.21014 -0.71534 0.12431 -0.00347 -3.32479 -0.84410 0.17141 -0.00565 -2.81669 -0.21361 0.11445 -0.00578 -3.26296 -0.99681 0.11197 -0.00108

-0.06919 -0.28651 0.00015 0.00164 -0.06564 -0.40806 -0.00347 0.00257 -0.03803 -0.57770 -0.00565 0.00370 -0.09132 -0.46673 -0.00578 0.00309 -0.06185 -0.20100 -0.00108 0.00123

Y -1 . . . -1 . . . -1 . . . -1 . . . -1 . . .

5

The MIANALYZE Procedure Model Information Data Set Number of Imputations

WORK.OUTREG 5

Multiple Imputation Variance Information

Parameter Intercept x1 x2

-----------------Variance----------------Between Within Total 1.776494 0.041700 0.000362

74.876345 0.120737 0.002444

77.008138 0.170777 0.002878

DF

Relative Increase in Variance

Fraction Missing Information

Relative Efficiency

5219.7 46.588 175.59

0.028471 0.414460 0.177759

0.028055 0.321531 0.160438

0.994420 0.939579 0.968910

Multiple Imputation Parameter Estimates Parameter

Estimate

Std Error

Intercept x1 x2

91.482275 -3.132633 -0.065207

8.775428 0.413252 0.053648

95% Confidence Limits 74.27876 -3.96418 -0.17108

108.6858 -2.3011 0.0407

DF

Minimum

Maximum

Theta0

t for H0: Parameter=Theta0

Pr > |t|

5219.7 46.588 175.59

89.278516 -3.324786 -0.091324

92.591804 -2.816686 -0.038031

0 0 0

10.42 -7.58 -1.22