Home
Add Document
Sign In
Create An Account
Cauchy Condensation Test & Sterlings Approximation by: javier
Download PDF
Comment
Report
4 Downloads
75 Views
Calculus II Sequence & Series: Cauchy Condensation Test & Sterlings Approximation ∞ ! n=1
a(n) ≈
n! ≈
√
∞ !
2n a(2n )
n=1
2πn
" n #n e
by: javier
Understanding the Cauchy Condensation Test
The Key Idea
Understanding the Cauchy Condensation Test
The Key Idea ∞
∞
∞
n=1
n=1
n=1
! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2
Understanding the Cauchy Condensation Test
The Key Idea ∞
∞
∞
n=1
n=1
n=1
! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2
requires a little bit of work to prove, but well worth it..
Understanding the Cauchy Condensation Test
The Key Idea ∞
∞
∞
n=1
n=1
n=1
! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2
requires a little bit of work to prove, but well worth it.. from it we get
Understanding the Cauchy Condensation Test
The Key Idea ∞
∞
∞
n=1
n=1
n=1
! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2
requires a little bit of work to prove, but well worth it.. from it we get ∞ ! n=1
a(n) ≈
∞ ! n=1
2n a(2n )
Examples using CCT !
If a(n) is decreasing
!
and a(n) > 0 for all large n′ s
then
!
a(n) ≈
!
2n · a(2n )
Examples using CCT !
If a(n) is decreasing and a(n) > 0 for all large n′ s
getai
!
then
!
! a(n) ≈ 2n · a(2n ) !1
example:
n
=
[
a
"
II
Bondiverge
Examples using CCT !
If a(n) is decreasing
!
and a(n) > 0 for all large n′ s
then
!
! a(n) ≈ 2n · a(2n ) ! 1
example: a
n2
[ sit
=22¥z¥ .
{ #
"
Examples using CCT !
If a(n) is decreasing
!
and a(n) > 0 for all large n′ s
then
!
a(n) ≈ !
!
2n · a(2n )
1 n(ln n)3
example:
:[
=
=
[
KITH ¥3
# [
nts
Examples using CCT !
If a(n) is decreasing
!
and a(n) > 0 for all large n′ s
then
!
example:
!
2n · a(2n ) 1 n(ln n)(ln(ln n))
a(n) ≈ !
Sterlings Approximation
Sterlings Approximation n! ≈ * !
H
⇐
!
=
√
2πn ·
" n #n e
Ft ( * *
Ftse
(Ey§h
Sterlings Approximation
Sterlings Approximation n! ≈
example:
!
n2 (2n − 1)!
√
2πn ·
" n #n e
Sterlings Approximation
Sterlings Approximation n! ≈
example:
! n! h 5n
√
2πn ·
!
sterling
#
⇐[ Fa
-
=
Ft
[
(
"
mgnehn ,
rn
¢ h
>#e#= £
.
use
root -
test
" n #n e
Sterlings Approximation
Sterlings Approximation n! ≈
example:
! 2n n! nn
Eiden
√
2πn ·
" n #n e
't
.
'
inert =nT#
.µgtY Enter =€z%¥
⇐
=Fu{
"
Sterlings Approximation
Sterlings Approximation n! ≈
example:
! 5n n! nn
√
2πn ·
" n #n e
Sterlings Approximation
Sterlings Approximation n! ≈
example:
1
(n!) n lim n→∞ n
:
den
⇐
"
#¥#sY#n=n÷ =
£
n
√
2πn ·
" n #n e
Sterlings Approximation
Sterlings Approximation n! ≈
example:
! (n!) 1n n
Tete
√
2πn ·
" n #n e
Recommend Documents
Calculus II Sequence & Series: Cauchy Condensation Test by: javier
Calculus II Sequence & Series: Cauchy Condensation Test by: javier
Calculus: BasicTechniquesforFindingLimits by: javier
Calculus: BasicTechniquesforFindingLimits by: javier
Calculus: DirectionalLimits by: javier
Trionometry: RatioNirvana by: javier
Math252CalculusIII:VectorCalculusOverview by: javier
Calculus: Continuity by: javier
Math252CalculusIII:IntroductiontoVectorFields by: javier
×
Report Cauchy Condensation Test & Sterlings Approximation by: javier
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Login with Facebook
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & Close