Cauchy Condensation Test & Sterlings Approximation by: javier

Report 4 Downloads 75 Views
Calculus II Sequence & Series: Cauchy Condensation Test & Sterlings Approximation ∞ ! n=1

a(n) ≈

n! ≈



∞ !

2n a(2n )

n=1

2πn

" n #n e

by: javier

Understanding the Cauchy Condensation Test

The Key Idea

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it..

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it.. from it we get

Understanding the Cauchy Condensation Test

The Key Idea ∞





n=1

n=1

n=1

! ! 1! n n 2 a(2 ) ≤ a(n) ≤ 2n a(2n ) 2

requires a little bit of work to prove, but well worth it.. from it we get ∞ ! n=1

a(n) ≈

∞ ! n=1

2n a(2n )

Examples using CCT !

If a(n) is decreasing

!

and a(n) > 0 for all large n′ s

then

!

a(n) ≈

!

2n · a(2n )

Examples using CCT !

If a(n) is decreasing and a(n) > 0 for all large n′ s

getai

!

then

!

! a(n) ≈ 2n · a(2n ) !1

example:

n

=

[

a

"

II

Bondiverge

Examples using CCT !

If a(n) is decreasing

!

and a(n) > 0 for all large n′ s

then

!

! a(n) ≈ 2n · a(2n ) ! 1

example: a

n2

[ sit

=22¥z¥ .

{ #

"

Examples using CCT !

If a(n) is decreasing

!

and a(n) > 0 for all large n′ s

then

!

a(n) ≈ !

!

2n · a(2n )

1 n(ln n)3

example:

:[

=

=

[

KITH ¥3

# [

nts

Examples using CCT !

If a(n) is decreasing

!

and a(n) > 0 for all large n′ s

then

!

example:

!

2n · a(2n ) 1 n(ln n)(ln(ln n))

a(n) ≈ !

Sterlings Approximation

Sterlings Approximation n! ≈ * !

H



!

=



2πn ·

" n #n e

Ft ( * *

Ftse

(Ey§h

Sterlings Approximation

Sterlings Approximation n! ≈

example:

!

n2 (2n − 1)!



2πn ·

" n #n e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

! n! h 5n



2πn ·

!

sterling

#

⇐[ Fa

-

=

Ft

[

(

"

mgnehn ,

rn

¢ h

>#e#= £

.

use

root -

test

" n #n e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

! 2n n! nn

Eiden



2πn ·

" n #n e

't

.

'

inert =nT#

.µgtY Enter =€z%¥



=Fu{

"

Sterlings Approximation

Sterlings Approximation n! ≈

example:

! 5n n! nn



2πn ·

" n #n e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

1

(n!) n lim n→∞ n

:

den



"

#¥#sY#n=n÷ =

£

n



2πn ·

" n #n e

Sterlings Approximation

Sterlings Approximation n! ≈

example:

! (n!) 1n n

Tete



2πn ·

" n #n e