S - 1 Supporting information: Porous Iron Cobaltate Nanoneedles ...

Report 4 Downloads 58 Views
Supporting information:

Porous Iron Cobaltate Nanoneedles Array on Nickel Foam as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance

Li Liu, Huijuan Zhang, Yanping Mu, Jiao Yang, Yu Wang*

The State Key Laboratory of Mechanical Transmissions and the School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China

*E-mails for Y. W.: [email protected]; [email protected]

S-1

Figure S1. a) XRD pattern of the (Fe, Co) bimetallic hydroxide carbonate precursors; b) EDS image of FeCo2O4 nanoneedles array on nickel foam substrate; c) XRD pattern of CoFe2O4 nanoneedles array on nickel foam substrate; d) EDS image of CoFe2O4 nanoneedles array on nickel foam substrate.

S-2

Table S1. Compositions of FeCo2O4 nanoneedles array/Ni foam and CoFe2O4 nanoneedles array/Ni foam. Composites

Targeted Fe/Co/O ratio

Experimental (ICP-AES) Fe/Co/O ratio

FeCo2O4 nanoneedles array

1.00: 2.00: 4.00

0.99: 2.06: 4.42

CoFe2O4 nanoneedles array

2.00: 1.00: 4.00

2.05: 1.04: 4.36

S-3

Figure S2. Nitrogen adsorption-desorption isotherm and the corresponding pore size distribution (inset) of FeCo2O4 nanoneedles array.

S-4

Figure S3. a) SEM image of the (Fe, Co) bimetallic hydroxide carbonate precursors for CoFe2O4 nanoneedles array; b) SEM image of the CoFe2O4 nanoneedles array on nickel foam substrate; c) TEM image of the (Fe, Co) bimetallic hydroxide carbonate precursors for CoFe2O4 nanoneedles array; d) TEM image of the CoFe2O4 nanoneedle (the inset is the magnifying HRTEM image).

S-5

Figure S4. Contrast experiment of cyclability for FeCo2O4 nanoneedles array, CoFe2O4 nanoneedles array and FeCo2O4 bulks.

S-6

Figure S5. The SEM image of the FeCo2O4 nanoneedles array on Ni foam after (a) 200 charge-discharge cycles; (b) 350 charge-discharge cycles at the current density of 100 mAh g-1.

S-7

Table S2. Comparison of electrochemical performance with other lastly available transition metal oxides. Materials

Current density

Capacity

-1

-1

Capacity

Reference

(mA g )

(mAh g )

retention (%)

NiCo2O4 mesoporous microspheres

800

705 after 500 cycles

61.6

1

Porous NiCo2O4 microflowers

100

952 after 60 cycles

71

2

Hierarchical MnCo2O4 nanowire

200

1038 after 45 cycles

60.8

3

Mesoporous MnCo2O4 microsphere

900

320 after 200 cycles

32.2

4

Wrinkled-paper-like ZnCo2O4@C

100

538 after 50 cycles

62.4

5

Fe2O3@NiCo2O4 porous nanocages

200

1079.6 after 100 cycles

82.3

6

Hollow FeCo2O4 nanospheres

100

1060 after 50 cycles

80

7

FeCo2O4 nanoflakes

200

905 after 170 cycles

48.2

8

Porous FeCo2O4 nanoneedles array

100

1129 after 350 cycles

57.5

This work

S-8

References and notes 1.

Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High Electrochemical Performance of Monodisperse

NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 981-988. 2.

Xu, J. M.; He, L.; Xu, W.; Tang, H. B.; Liu, H.; Han, T.; Zhang, C. J.; Zhang, Y. H. Facile Synthesis of

Porous NiCo2O4 Microflowers as High-Performance Anode Materials for Advanced Lithium-Ion Batteries. Electrochim. Acta 2014, 145, 185-192. 3.

Mohamed, S. G.; Hung, T. F.; Chen, C. J.; Chen, C. K.; Hu, S. F.; Liu, R. S. Efficient Energy Storage

Capabilities Promoted by Hierarchical MnCo2O4 Nanowire-Based Architectures. Rsc Adv. 2014, 4, 17230-17235. 4.

Fu, C. C.; Li, G. S.; Luo, D.; Huang, X. S.; Zheng, J.; Li, L. P. One-Step Calcination-Free Synthesis of

Multicomponent Spinel Assembled Microspheres for High-Performance Anodes of Li-Ion Batteries: A Case Study of MnCo2O4. ACS Appl. Mater. Interfaces 2014, 6, 2439-2449. 5.

Giri, A. K.; Pal, P.; Ananthakumar, R.; Jayachandran, M.; Mahanty, S.; Panda, A. B. 3D Hierarchically

Assembled Porous Wrinkled-Paper-like Structure of ZnCo2O4 and Co-ZnO@C as Anode Materials for Lithium-Ion Batteries. Cryst. Growth Des. 2014, 14, 3352-3359. 6.

Huang, G.; Zhang, L. L.; Zhang, F. F.; Wang, L. M. Metal-Organic Framework Derived Fe2O3@NiCo2O4

Porous Nanocages as Anode Materials for Li-Ion Batteries. Nanoscale 2014, 6, 5509-5515. 7.

Liu, L.; Hu, Z. B.; Sun, L. M.; Gao, G.; Liu, X. F. Controlled Synthesis and Enhanced Electrochemical

Performance of Prussian Blue Analogue-Derived Hollow FeCo2O4 Nanospheres as Lithium-Ion Battery Anodes. Rsc Adv. 2015, 5, 36575-36581. 8.

Mohamed, S. G.; Chen, C. J.; Chen, C. K.; Hu, S. F.; Liu, R. S. High-Performance Lithium-Ion Battery and

Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes. Acs Appl. Mater. Interfaces 2014, 6, 22701-22708.

S-9