Vermenigvuldiging van breuke Daar is verskillende maniere en metodes by vermenigvuldiging van breuke. Kom ons gaan kyk saam na die verskillende maniere waarop dit gevra kan word en hoe ons dit kan oplos. Voorbeeld 1:
2 3 3 4 By vermenigvuldiging van breuke waar altwee breuke egte of onegte breuke is, volg jy die volgende stappe: Stap 1: Vermenigvuldig die tellers met mekaar, nl. 2 x 3 = 6 Stap 2: Vermenigvuldig die noemers met mekaar, nl. 3 x 4 = 12 Jou breuk lyk nou soos volg:
6 12
Stap 3: Vereenvoudig jou antwoord, nl.
Jou finale antwoord is:
1 2
66 1 12 6 2
4 5 Wanneer jy ‘n heelgetal moet vermenigvuldig met ‘n breuk doen jy die volgende: Jy weet mos nou al dat alle heelgetalle se noemers eintlik 1 is, so verander die heelgetal na ‘n breuk toe deur dit op 1 te skryf: 3 4 1 5 Nou volg jy dieselfde drie stappe as wat jy by voorbeeld 1 gevolg het: Stap 1: Vermenigvuldig die tellers met mekaar, nl. 3 x 4 = 12 Voorbeeld 2:
3
Stap 2: Vermenigvuldig die noemers met mekaar, nl. 1 x 5 = 5 12 Die antwoord is nou 5 Stap 3: Vereenvoudig die antwoord. Daar is geen getal, behalwe 1, wat in 12 en 5 kan indeel nie, so jou finale antwoord is dus: 12 5 Onthou egter om onegte breuke altyd te vereenvoudig na gemengde getalle toe: 2 2 5 Let wel: Die tegniek bly altyd dieselfde - jy vermenigvuldig die tellers met mekaar, vermenigvuldig die noemers met mekaar en vereenvoudig
Oefening Bereken en gee die antwoord in sy eenvoudigste vorm: 1 2 3 2 a) b) 6 3 4 3 c)
3 1 4 2
d)
3 5 8 6
e)
8
4 9
f)
5
7 11
Voorbeeld 3:
3 2 3 2 4 5 Wanneer jy breuke wat gemengde getalle bevat met mekaar vermenigvuldig gaan jy soos volg te werk: Verander die gemengde getalle na onegte breuke toe: 3 Breuk 1: 3 word dus 3 x 4 = 12 + 3 = 15 4
15 4
2 Breuk 2: 2 word dus 2 x 5 = 10 + 2 = 12 5
12 5
Die breuke lyk nou soos volg:
15 12 4 5
Dan volg jy die gewone drie stappe: Stap 1: Vermenigvuldig die tellers met mekaar, nl. 15 x 12 = 180 Stap 2: Vermenigvuldig die noemers met mekaar, nl. 4 x 5 = 20 Jou antwoord is nou
180 20
Stap 3: Vereenvoudig jou antwoord, nl.
9 9 1
Let wel: Jy kon ook besluit het om eers vertikaal en diagonaal uit te kanselleer, aangesien die getalle in die breuke dit toegelaat het! Dan sal die vermenigvuldiging bo en onder die lyn baie makliker gewees het:
15 12 3 3 9 4 5 1 1 Dan kan jy ook te doen kry met die woord “van” 2 Voorbeeld 4: Wat is van 18? 3 Wanneer jy ‘n breuk van ‘n heelgetal moet bereken gaan jy soos volg te werk: Verander die woord “van” na ‘n vermenigvuldig toe, en daar is jy terug by die vermenigvuldiging van ‘n breuk met ‘n heelgetal!